所谓科学的研究方法,很明显就是科学工作者在从事某项科学发现时所采用的方法。但是。这个过于简单的说明对我们没有多大帮助。能不能对这个问题作出更详细的说明呢?
好吧!我们可以描述一下这个问题的一个理想答案。
(1)在进行科学研究时,应当首先认识到问题的存在。例如,在研究物体的运动时,首先应当注意到物体为什么会像它所发生的那样进行运动,亦即物体为什么在某种条件下会运动得越来越快(加速运动),而在另一种条件下则会运行得越来越慢(减速运动)。
(2)要把问题的非本质方面找出来,加以剔除。例如,一个物体的味道对物体的运动是不起任何作用的。
(3)要把你能够找到的、同这个问题有关的全部数据都收集起来。在古代和中世纪,这一点仅仅意味着如实地对自然现象进行敏锐观察。但是进入近代以后,情况就有所不同了,因为人们从那时起已经学会去模仿各种自然现象,也就是说,人们已经能够有意地设计出种种不同的条件来迫使物体按一定的方式运动,以便取得与该问题有关的各种数据。例如,可以有意地让一些球从一些斜面上滚下来;这样做时,既可以用各种大小不同的球,也可以改变球的表面性质或者改变斜面的倾斜度,等等。这种有意设计出来的情况就是实验,而实验对近代科学起的作用是如此之大,以致人们常常把它称为“实验科学”,以区别于古希腊的科学。
(4)有了这些收集起来的数据,就可以作出某种初步的概括,以便尽可能简明地对它们加以说明,亦即用某种简明扼要的语言或者某种数学关系式来加以概括。这也就是假设或假说。
(5)有了假说以后,你就可以对你以前未打算进行的实验的结果作出推测。下一步,你便可以着手进行这些实验,看看你的假说是否成立。
(6)如果实验获得了预期的结果,那么,你的假说便得到了强有力的事实依据,并可能成为一种理论,甚至成为一条“自然定律”。
当然,任何理论或自然定律都不是最后定论。这一过程会一次又一次地重复下去。新的数据,新的观察和新的实验结果将不断出现,旧的自然定律将不断为更普遍的自然定律所替代,因为这些新的定律不但能说明旧定律所能解释的各种现象,而且还能说明旧定律所不能解释的一些现象。
以上这些,正如我已经说过的,是一种理想的科学研究方法。但是在真正的实践中,科学工作者并不需要像做一套柔软体操那样一步一步地进行下去,而且他们通常也不这样做。
比起旁的事情来,像直觉、洞察力甚至运气这一类因素常常更起作用。在整部科学史中充满了这样的例子。有不少科学家仅仅根据很不充分的数据和很少一点实验结果(有时甚至一点实验结果也没有),便突然灵机一动,得出了有用的、合乎事实的论断。这样的论断,如果按部就班地通过上述理想的科学研究方法进行,就可能要用好几年的时间才能得到。
例如,凯库勒就是在邮车上打瞌睡的时候,突然领悟到苯的化学结构的。洛维则在半夜醒来的时候,突然得到了关于神经刺激的化学传导问题的答案。格拉泽却由于无聊地凝视着一杯啤酒,才得到了气泡室的想法。
然而这是不是说,一切都是凭好运气得来的,根本不需要动脑筋去思考呢?不,绝对不是的。这样的“好运气”只有那些具有最好领悟力的人才会碰上,换句话说,有些人之所以会碰上这样的“好运气”,只是因为他们具有十分敏锐的直觉,而这种敏锐的直觉则是依靠他们丰富的经验、深刻的理解力和平时爱动脑筋换来的。
○米○花○书○库○ ;http://www。7mihua。com
第2节
如果所提出的问题是“谁是第二伟大的科学家”,那就很难回答来。因为,据我看来,至少有十来位科学家可以看作是第二伟大的科学家。例如,爱因斯坦,卢瑟福,玻尔,巴斯德,达尔文,伽利略,麦克斯韦,阿基米得等,都可以算得上。
事实上,世界上很可能根本没有第二伟大的科学家。既然有那么多科学家都能如此合适地看作第二伟大的科学家,既然在上面列举的科学家中很难区别出到底谁更伟大,我们只好停止进行这项评选,干脆说他们都是名列前茅的选手。但是,由于我们所提出的问题是:“谁是最伟大的科学家?”所以,要回答这个问题是没有多大困难的。我认为大多数科学史家都会立刻异口同声地说,牛顿是世界上从未有过的最伟大的科学家。尽管他也有他自己的一些缺点,例如,他是一个很糟糕的演讲者,还或多或少是个胆小怕事的人,是一个喜欢自我怜悯的好哭的人,而且有时还容易灰心丧气,但是作为一个科学家来说,那是没有人能够和他相比的。
他由于研究出微积分而为高等数学奠定了基础。他由于进行了把阳光分解为光谱色的实验而奠定了现代光学的基础。他由于发现了力学上的三大定律并推导出这些定律所起的作用而奠定了现代物理学的基础。他由于研究万有引力定律而奠定了现代天文学的基础。
任何科学家只要具有这四项功绩中的一项,就足以成为一位显赫的科学家,如果所有这四项贡献都是他一个人作出的话,那他就会毫无疑问成为名列首位的科学家。
当然,牛顿的伟大还不只限于他的这些发现。更重要的是他作出这些发现时所采取的方式。
古希腊人曾把大量科学思想和哲学思想汇集在一起。柏拉图、亚里斯多德、欧几里得、阿基米得和托勒密等伟大人物,在两千年当中一直像巨人一样屹立在后代人的心目之中。后来阿拉伯和欧洲的许多伟大思想家都没有能够越过古希腊人一步,在不引证古人的见解来支持其想法的情形下,都不敢提出自己的新见解。尤其是亚里斯多德,更是他们心目中的泰斗。
到了十六和十七世纪,才有一些实验家,如伽利略和波义耳等,敢于提出古希腊人的见解并非全是正确的。伽利略推翻了亚里斯多德在物理学上的某些论断,并作了不少工作(牛顿后来的三大运动定律就是对伽利略这些工作所进行的概括)。尽管如此,欧洲当时的知识界仍然不敢背离他们长期以来所崇拜的希腊人。
到了1687年,牛顿出版了他用拉丁文写的名著《数学原理》。根据大多数科学家的看法,这是自古以来第一部最伟大的著作。在这部著作中,他提出了他的物体运动三大定律,他的万有引力理论以及许多其他问题。他以严格的希腊风格应用了数学,并以最完美的方式把各种现象联系在一起。凡是读过这部书的人,都不得不承认世界上终于出现了一位不但可与任何一个古代思想家并驾齐驱,甚至胜过他们的伟大思想家,不得不承认他所提出的宇宙图案不仅是无懈可击十分完善的,而且从它的合理性和必然性方面来说,都大大胜过希腊文献中所提到的东西。
随着这个伟大人物和这部伟大著作的出现,古希腊人加在人们思想上的枷锁终于被打碎了,现代人在智慧上的全部自卑感永远被打破了。
在牛顿逝世以后,亚历山大教皇用以下几句话谈到了他:
自然和自然规律隐藏在黑夜之中
上帝差遣牛顿来到我们当中
于是,他揭开了自然这谜,创业立功
————
碧声注:上述译文有误,这几句话的作者是一位名叫亚历山大·蒲柏(AlexanderPope)的英国诗人,并非教皇。
第3节
回答这个问题的一个最简便办法,是直截了当地说,这是因为科学家并不是在真空中工作的。这也就是说,他们全都深深地卷入到当时的科学结构和科学进步之中,并同时面对着同样一些问题。
例如,在十九世纪上半叶,物种进化的问题在很大程度上仍然是个悬而未决的问题。有一些生物学家曾经激烈反对这种看法,然而另外一些生物学家则在那里积极地推测这种进化可能引起的后果,并竭力寻找物种进化的证据。尽管他们当中既有人反对,也有人支持这种看法,但几乎每一个生物学家都在思考这个问题,这是当时的实际情况。当时的主要问题是:
如果确实发生了物种进化,那么,到底是什么因素导致这种进化的呢?┃米┃花┃书┃库┃ ;http://__
在英国的达尔文当时正在思考这个问题。在东印度群岛的另一个英国人华莱士也在思考着同样的问题。这两个人都是周游世界的旅行家,都进行了类似的观察;而且在思考这个问题的关键时刻又都同时阅读了马尔萨斯的一本著作。马尔萨斯在这本著作中谈到了人口不断增长对人类所发生的影响。当时,达尔文和华莱士两人都开始思考这样一个问题:生物数量的增加对所有物种所造成的压力。哪一些个体会生存下去,而哪一些个体将不能生存下去?结果,他们两人都得出了通过生物的自然淘汰而进行物种进化的新理论。
但是,上面所说的这些还不算是最令人惊讶的。因为这两个人都以同样的方式研究同样一个问题,都对同一些事实进行观察,而又都阅读了同一本由另一个人所写的书,因此就很可能得出相同的答案。
到了十九世纪后半叶,许多生物学家都试图弄清生物遗传机理。有三个分别住在三个不同国家的人,竟在同一时期以同样的方式研究了这个问题,并得出了相同的结论。而且这三个人在查阅过去的文献时,又都不约而同地发现了另一个人(孟德尔)早在三十四年前就已经发现的、但一直没有引起人们注意的遗传规律。
十九世纪八十年代对科学工作者所提出的一项巨大任务,是如何能够以低成本生产出铝。当时,人们虽然已经知道了铝的特性和用途,却很难从铝矿石中把它提炼出来。要从这项发现中发财致富,完全取决于能否研究出一种容易实现的技术。我们很难查明,到底有多少化学工作者当时曾经以另一些化学工作者已经取得的同一些经验为依据来研究这个问题。但是我们已经知道,有两个人在同一年——1886年——得出了同样的答案。其中一个是美国的霍尔,另一个是法国的赫鲁特。这一点,似乎并不使人感到十分奇怪,令人感到惊讶的倒是:这两个人不但姓氏的第一个字母都是H,并且两人既都生于1863年,又都死于1914年。
第4节
!米!花!书!库! ;http://www。7mihua。com
从欧几里得(2200年前)以来,数学家一般都是从某些称为“公理”的陈述出发,推导出各种有用的结论。
从某种意义上说,这几乎就像是一种必须遵守两条规则的游戏。第一,公理应当尽量少。如果你能从某一条公理推导出另一条公理,所么,所推导出的那条公理就不能作为公理。
第二,公理必须是没有内在矛盾的。绝不允许从某一公理推导出两个相互矛盾的结论。
任何一本中学几何课本都要先列出一组公理:通过两点只能作一条直线;整体等于各个部分之和,等等。在很长一段时间内,人们都把欧几里得的公理看作是唯一可用来建立没有内在矛盾的几何学的公理,从而把这些公理看作是“真公理”。
但是,到了十九世纪,有人证明了欧几里得的公理是可以用某些方式来加以改变的,因而可以建立另外一种不同的几何学,即“非欧几里得几何学”。这两种几何学虽然各不相同,但每一种几何学都不具有内在矛盾。从此以后,人们如果要问哪一种几何学是真几何学,就没有意义了。如果要问,就只能问哪一种几何学更有用些。
事实上,我们可以用许多组公理来建立几种各不相同但又各自并不具有内在矛盾的数学体系。
在任何一种这样的数学体系中,你都必定不可能根据它的公理推导出既是如此又非如此的结论,因为如果这样的话,这个数学体系就不可能不具有内在矛盾,就会遭到淘汰。
但是,倘若你能做出一种陈述,并且发现你不能证明它既是如此又非如此的话,又将怎么样呢?
假如我说:“我现在所说的是假话”。
是假话吗?如果是假话,那么,我在说假话这件事就是假的了,因此,我必定在说真话。如果我在说真话,那么我在说假话这件事就是真的了,因此,我确实在说假话。我可以永无休止地来回这样说,结果,将永远无法证明我所说的到底是如此,还是并非如此。
假如你能对这些逻辑公理进行调整,以排除上面所说的这种可能性,那么,你能不能找到另外的方法来做出这样一种既是如此,又非如此的说法?
1931年,一位奥地利数学家戈德尔终于提出一个有力的证明,他指出,对于任何一组公理,你都能做出既不能根据这些公理来证明事实确是如此,也不能根据这些公理来证明事实确非如此的说法。从这个意义上讲,任何人都不可能建立出一种可以凭此推导出一个完美无缺的数学体系的公理。
这是不是意味着我们永远不可能找到“真理”呢?当然不是的。
第一,因为一种数学体系不完美,并不意味着它所包含的东西是“假的”。如果我们不想超出这样的数学体系的限度来应用它,它就仍然是极其有用的。
第二,戈德尔证明只适用于数学中所应用的那几种演绎体系。但是演绎并不是发