的隔绝作用就越小,那个原子核的拉力就越大,而元素也就越活泼。
在这种类型的元素当中,电子壳层数目最少的是氟,它的电子排列为2,7。因此,氟是一切非金属元素中最活泼的。
第83节
与其他元素难以发生化学反应或根本不发生化学反应的元素称为“惰性”元素。氮和铂就是惰性元素的例子。
在十九世纪九十年代、在大气中发现了一些似乎根本不发生任何化学反应的气体。这些新发现的气体——氦、氖、氩、氪、氙和氡——比其他任何元素的惰性都强,于是人们把它们都归入“惰性气体”。
惰性元素有时被称为“贵”元素,因为它们不与其他元素发生化学反应,就它们那一方面来说,这似乎是一种贵族式的冷淡。金和铂是“贵金属”的两个例子,而惰性气体有时被称为“贵气体”,也是由于这个原固。1962年以前,“惰性气体”是比较通用的术语,也许是因为“贵气体”似乎不适合于民主社会。γ米γ花γ书γ库γ ;http://www。7mihua。com
惰性气体之所以是惰性的,其原因在于:每一种惰性气体原子所含有的电子数在各壳层中的排列,正好使每个壳层中都有特别稳定的数目,具体地说,即在最外面的壳层中有8个电子。因此,氖的电子排列是2,8;氩的电子排列是2,8,8。增加或减少电子,都会打破这种稳定的排列,因此,就不会发生任何电子变化。这就意味着不会发生化学反应,所以这样一些元素是惰性的。
然而,惰性的程度取决于原子中心带正电荷的原子核用以拉住最外面壳层上各个电子的强度。最外层与中心之间的电子壳层越多,原子中心的原子核的控制力就越弱。
这就意味着,惰性气体元素中原子结构最复杂的元素,也就是惰性最小的元素。原子结构最复杂的惰性气体是氡。氡的原子所具有的电子排列是2,8,18,32,18,8;但氡仅仅是由放射性同位素所构成,所以它是难以用来进行化学实验的一种元素。仅次于氡的最复杂的气体是氙,它是稳定的。它的原子所具有的电子排列是2,8,18,8。
氙原子和氡原子中最外面的电子离原子核很远,原子核不能十分有力地抓住它们。当存在着具有吸引电子的强烈倾向的原子时,这些电子就会被放弃。氟的原子具有吸引电子的最强倾向。1962年,加拿大化学家巴特利特发现有可能形成氙和氟的化合物。
从那以后,还组成了氡的化合物和氪的化合物。鉴于这种情况,化学家们不乐意再使用“惰性气体”这个术语,因为这些原子毕竟不是完全惰性的;“贵气体”这个术语现在已逐渐通行起来、而且形成了化学的一个完整的新的分支学科,专门研究“贵气体化合物”。
当然,贵气体的原子越小,惰性就越强,至今还没有发现任何东西能从这些原子中把电子夺走。氩原子中的电子排列是2,8,8。氖原子中的电子排列是2,8。氩和氖仍然完全是惰性的。惰性最强的是氦,它的原子仅有一个带两个电子的电子壳层(所有原子最里面的壳层都有两个电子)。
第84节
在通常情况下,物质有三态:气态,液态和固态。在气体中,组成气体的原子或(通常为)分子的能量非常高,或者各个分离的分子之间的引力非常低(或者两者兼备)。以致各个分子独立地进行运动。
如果能量降低到一定点,那么,分子就不能再保持独立性,而必定会互相发生接触。但是这时还有足够的能量可供分子进行运动,使分子在其他分子间滑动。这种情况就是液体。
如果能量进一步降低,各个分离的分子就不能再滑动,而会固定在某个方位上(尽管它们也许能够或确实会在它们的固定位置附近振动)。这种物质就是固体。
在固体中,两个相邻的分子(或原子,或离子)的相对位置不是随意的。它们处于某种有规则的排列之中,这种排列取决于不同的粒子具有什么样的比例,大小有怎样的差别,外部压力有多大,等等。在氯化钠中,钠离子和氯离子的数①2000年,芬兰科学家首次合成了氩的稳定化合物——氟氩化氢(HArF)。
——碧声注
目相等,大小没有太大的差别。在氟化铯中,铯离子和氟离子的数目相等,但铯离子比氟离子大得多。在氯化镁中,镁离子和氯离子的大小没有太大的差别,但是在数目上,氯离子为镁离子的两倍。由于这一原因,每种化合物很自然地以不同的方式进行排列。
如果你得到一块可见物质,它是由全部按有序方式排列的原子、离子或分子所组成,那么,这块可见物质就会有一些光滑的表面,它们以一些固定的角度相交(这就像从空中来看一个军队的队形。你也许看不见各个士兵,但是如果他们排列得很好,你就会看见那个队伍,比如说,呈矩形)。这块可见物质(或者说“晶体”)的整个形状取决于原子的排列。对于在一系列给定条件下的任何给定的物质来说,原子排列是固定的,因此晶体总是具有确定的形状。
固体物质从本质上说几乎总是晶体,即使它们看起来并不像是那样。我们知道,要形成一种理想的晶体,最好从处于溶液状态的纯物质着手(这样,外来的原子就不会滑入和打乱排列)。溶液应该缓慢地冷却,以便让原子有时间排成阵列。
在自然界往往存在着由几种物质组成的混合物,因此,我们最后得到的,是互相推撞和互相拥挤的几种不同的晶体。不仅如此,如果冷却非常快,那么,就会有许多晶体开始形成,以致其中任何一个晶体都没有机会生长到超过显微的大小,这些晶体各取各的方向,因此没有确定的形状。
因此,在自然界,我们很少能看到足够大的清澈的晶体。
通常我们所遇到的,是一些不规则的物质碎块,它们是由我们未察觉到的微晶体构成的。
有一些固体物质不是结晶状的,因此不真正是固体。玻璃就是一个例子。液态玻璃是很有粘性的,因此它的离子就难以运动,也难以排成有序阵列。当玻璃冷却时,离子运动得越来越慢,最后完全停止运动,停在哪儿就将它们的位置保持在那儿。
在这种情况下不存在有规则的排列,因此,“固态”玻璃实际上是一种“超冷的液体”。玻璃可以是硬的,摸起来像是固体,但是它没有晶体结构,而且,它没有明显的熔点,这是它最致命的弱点。所以,“固态”玻璃在加热时就只是逐渐软化而已。
第85节
关于这个问题,最简单的回答是每种东西都能压缩。
事实上,压缩气态物质比压缩其他任何形态的物质要容易得多。那是因为气体是由相距很远的分子所组成的。例如,在普通的空气中,实际分子所占的空间大约是整个体积的千分之一。
在压缩某一气体时,仅仅需要克服分子本身的无规则运动所形成的扩张倾向,将它们更紧密地推压到一起,把分子之间的一些空处挤出,用人的肌肉力量就能够容易地做到这一点。例如,当你挤压一个气球时,你就是在对空气进行压缩。
就液体和固体而言,组成它们的原子和分子只是近于互相接触。借助于每个原子外层区域中的电子的相互斥力,这些原子和分子不再进一步靠拢。这表示液体和固体分子的抗压力比气体中分子运动的抗压力要强得多。5米5花5书5库5 ;www。7mihua。com
这意味着人的肌肉不能再做压缩液体和固体的工作,至少没有明显的效果。
假定你把一定量的水倒入一个上边开口的刚性容器里,并把一个密闭的活塞装入开口内,使它与水面接触。如果你用全力把活塞往下压,你就会发现,它不会明显地移动。由于这个原因,人们常说,水是“不可压缩的”,而且它的体积不能够挤得更小。
其实并不是这样。当你把活塞向下推时,你确实压缩了水,但压缩的程度不能测量出来。如果能够施加比人的肌肉大得多的压力,那么,水的体积或者任何其他液体或固体的体积的减小量,就会大到能够测量出来的程度。例如用每平方厘米1。1吨重的力量压缩100升的水,它的体积就会缩小为96升。随着压力的进一步增加,体积就会进一步缩小。在这种压缩力下,可以说,电子越来越靠近原子核了。
如果压力更大,比如说,压力相当于在巨大引力作用下成千上万公里厚的物质堆积起来的重量时,静电排斥力就会完全不起作用。电子就不能在轨道上围绕着原子核运动,而会被推开。然后物质就由不带电子的原子核组成,而电子则飞来飞去作无规则的运动。
原子核比原子小得多,因此,这种“退化的物质”大部分还是空的。地球中心的压力或者甚至木星中心的压力都不足以形成退化物质,但是在太阳的中心有退化物质。
一个完全由退化物质构成的恒星,可以像太阳那样重,但是体积却不比地球大。这就是一个“白矮星”。它能够在它自己的重力下进一步地压缩,直到它由互相接触的中子所组成。这样一个“中子星”能够具有太阳的全部质量,但被压缩成直径为十几公里的球体。
天文学家认为,它还能够进一步地压缩,直到变成体积为零的“黑洞”。
第86节
当我们看到一种金属的时候,大家都知道它是金属,因为金属有一些不平常的性质。当金属表面光滑时,它们反射光的效率很高,因此它们具有一种“金属光泽”;但非金属却没有很高的反射能力,因而具有一种“无光泽的颜色”。金属容易变形,能够制成金属板和拉成金属线;而非金属在受到打击时会被打碎,破裂或成为粉末。金属易于导热和导电;非金属却不能。
为什么有这样的差别?
在多大数普通化合物中,例如在我们周围,看得见的海洋里和土壤里的那些化合物分子是由原子所构成的,这些原子由于共同享有电子而紧密地保持在一起。这里的每一电子都紧紧地被束缚在某一个原子或另一个原子上。当出现这种情况时,物质就表现出非金属性质。
根据这种准则,氢是一种非金属。普通的氢分子是由两个氢原子构成的。每个氢原子只有一个电子,构成一个分子的两个氢原子平均共享那两个电子。没有剩下的电子。
当一些电子不是牢固地受到束缚时会发生什么情况呢?
例如,我们看一看元素钾吧。每个钾原子都有19个电子,它①黑洞体积为零吗?这种说法是不是不够严格?请高手指教。——碧声注
们排列在4个壳层中,只有最外面壳层中的电子可供共享。
在钾原子的情况下,这就意味着它仅仅有一个电子可以为相邻原子所共享。再则,这个最外面的电子被控制得特别松,因为在它和吸引它的中心原子核之间有另一些电子壳层,这些中间壳层把最外面的电子同中心引力隔开了。
在固体钾中,原子紧密地结合在一起,就像我们有时在水果店里看到的桔子堆成角锥形那样。每个钾原子有8个相邻原子。由于最外面的电子被控制得很松,而且许多相邻原子又如此靠近,因而任何一个最外面的电子都易于从一个相邻原子滑到另一个相邻原子。
可是,正是这些松而活动的电子,使得钾原子有可能这样紧密地结合在一起;使钾有可能易于导热和导电;也就使钾有可能变形。总之,这些松而活动的电子使钾(和其他元素以及含有这些元素的混合物)具有金属性。
现在记住,氢像钾一样,仅仅有一个电子可以为相邻原子所共享。然而,还有一个不同之处。在氢的一个(仅仅是一个)电子和中心原子核之间没有起隔离作用的电子。因此,这个电子被控制得太紧了一些,以致不能进行足够的运动来把氢转变为金属,或者迫使氢原子紧密地结合在一起。
但是,如果氢获得了外力,那会出现什么情况呢?如果氢不是由于本身电子的情况而是外界的压力迫使它们紧密地结合在一起,那又会怎么样呢?假定有足够的压力把氢原子非常紧密地挤在一起,以致各个原子都被8个、10个甚至12个近邻原子所包围。于是,每个氢原子的单个电子,不管原子核有异常强的吸引力,就可能开始从一个相邻原子滑到另一个相邻原子。这样你就会得到“金属氢”。
为了迫使氢这样紧密地结合在一起,氢原子必须处在一种近于纯粹的状态中(其他种原子的存在会产生干扰),并且不是在太高的温度下(高温会使它扩张)。氢原子还必须处在巨大的压力下。在太阳系中最接近于满足这些条件的地方是在木星的中心,因此有些人认为,木星的内部也许是由金属氢所构成的。
第87节
一个水分子通常是被描述为由两个氢原子和一个氧原子所构成(H2O)。如果所有的水分子都是如此,那它就会是低沸点的小分子。硫化氢(H2S)具有相似的但较重的分子(因为硫重于氧),它是一种气体,只要在…61。8℃时就液化。
如果水只是H2O,那么它就会在更低的温度下,也许在…80℃左右液化。
但是,可以看一看水分子的形状。三个原子构成的图形很接近于直角,而氧原子在顶点。氧与每一个氢原子共享两个电子,但这种共享不是平均的。氧对于电子具有较强的吸引力,因此,带负电荷的电子偏向于水分子中氧的那一方。这就意味着,虽然水分子整个来说是不带电的,但是水分子中氧的那一方有小量的负电荷,而两个氢原子则有小量与它平衡的正电