《黑洞、宇宙》

下载本书

添加书签

黑洞、宇宙- 第6部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
伯达斯·萨拉姆和史蒂芬·温伯格提出的。在萨拉姆——温伯格理论中,光子这个携带电磁相互作用的自旋为1的粒子和三种其他的自旋为1的称为W+,W…和Z°的伙伴相联合。人们预言,所有这四种粒子在非常高的能量下的行为都非常相似。然而,在更低的能量下人们用所谓的自发对称破缺来解释如下事实,光子具有零静质量,而W+、W…和Z°都具有大质量。该理论在低能下的预言和观测符合得十分好,这导致瑞典科学院在1979年把诺贝尔物理奖颁给萨拉姆、温伯格和谢尔登·格拉肖。格拉肖也建立了类似的理论。然而,因为我们还没有足够高能量的粒子加速器,它能在由光子携带的电磁力以及由W+、W…和Z°携带的弱力真正发生相互统一的范畴内检验理论,所以正如格拉肖自己评论的,诺贝尔委员会这次实际上冒了相当大的风险。人们在几年之内就会拥有足够强大的加速器,而大多数物理学家坚信,他们会证实萨拉姆——温伯格理论'10'。
  '10'作者注:事实上,1983年人们在日内瓦的欧洲核子中心观测到W和Z粒子。1984年另一次诺贝尔奖颁给了卡拉·鲁比亚和西蒙·范德·米尔,他们领导的小组作了此发现。只有特符夫特失去了得奖机会。
  萨拉姆——温伯格理论的成功诱使人们寻求强作用的类似的可重正化理论。人们在相当早以前就意识到,质子和诸如π介子的其他强子不能是真正的基本粒子,它们必须是其他,叫做夸克的粒子的束缚态。这些粒子似乎具有古怪的性质:虽然它们能在一颗强子内相当自由地运动,人们却发现得不到单独夸克自身。它们不是以三个一组地出现(如质子和中子),就是以包括夸克和反夸克的对出现(如π介子)。为了解释这种现象,夸克被赋予一种称作色的特征。必须强调的是,这和我们通常的色感无关,夸克太微小了,不能用可见光看到,它仅是一个方便的名字。其思想是夸克带有三种色——红、绿和蓝——但是任何孤立的束缚态,譬如讲强子必须是无色的,要么像是在质子中是红、绿和蓝的组合,要么像在n介子中是红和反红、绿和反绿以及蓝和反蓝的混合。
  人们假定,夸克之间的强相互作用由称作胶子的自旋为1的粒子携带。胶子和携带弱相互作用的粒子相当相像。胶子也携带色,它们和夸克服从称作量子色动力学(简称为QCD)的可重正化理论。重正化步骤的一个结论是,该理论的有效耦合常数依所测量的能量而定,而且在非常高的能量下减少到零。这种现象被称作渐近自由。这表明强子中的夸克在高能碰撞时的行为几乎和自由粒子相似,这样它们的微扰可以用微扰理论成功地处理。微扰理论的预言在相当定性的水平上和观测一致,但是人们仍然不能宣称这个理论已被实验验证。有效耦合常数在低能下变成非常大;这时微扰理论失效。人们希望这种〃红外束缚〃能够解释为何夸克总被禁闭于无色的束缚态中,但是迄今为止没有人能真正信服地展现这一点。
  在分别得到强相互作用和弱电相互作用的可重正化理论之后,人们很自然要去寻求把两者结合起来的理论。这类理论被相当夸张地命名为〃大统一理论〃或简称为GUT。因为它们既非那么伟大,也没有完全统一,还由于它们具有一些诸如耦合常数和质量等等不确定的重正化参数,因此也不是完整的,所以这种命名是相当误导的。尽管如此,它们也许是朝着完整统一理论的有意义的一步。它的基本思想是,虽然强相互作用的有效耦合常数在低能量下很大,但是由于渐近自由,它在高能量下逐渐减小。另一方面,虽然萨拉姆——温伯格理论的有效耦合常数在低能量下很小,但是由于该理论不是渐近自由的,它在高能量下逐渐增大。如果人们把在低能量下的耦台常数的增加率和减少率向高能量方向延伸的话,就会发现这两个耦合常数在大约10↑15吉电子伏能量左右变成相等。(一吉电子伏即是十亿电子伏。这大约是一颗氢原子完全转变成能量时所释放出的能量。作为比较,在像燃烧这样的化学反应中释放出的能量只具有每原子一电子伏的数量级。)大统一理论提出,在比这个更高的能量下,强相互作用就和弱电相互作用相统下,但是在更低的能量下存在自发对称破缺。
  10↑15吉电子伏能量远远超过目前的任何实验装置的范围。当代的粒子加速器能产生大约10吉电子伏的质心能量,而下一代会产生100吉电子伏左右。这对于研究根据萨拉姆——温伯格理论电磁力应和弱力统一的能量范围将是足够的,但是它还远远低于实现弱电相互作用和强相互作用被预言的统一的能量。尽管如此,在实验室中仍能检验大统一理论的一些低能下的预言。例如,理论预言质子不应是完全稳定的,它必须以大约10↑31年的寿命衰减。现在这个寿命的实验的低限为10↑30年,这应该可以得到改善。
  另一个可观测的预言是宇宙中的重子光子比率。物理定律似乎对粒子和反粒子一视同仁。更准确地讲,如果粒子用反粒子来替换,右手用左手来替换,以及所有粒子的速度都反向,则物理定律不变。这被称作CPT定理,并且它是在任何合理的理论中都应该成立的基本假设的一个推论。然而地球,其实整个太阳系都是由质子和中子构成,而没有任何反质子或者反中子。的确,这种粒子和反粒子间的不平衡正是我们存在的另一个先决条件。因为如果太阳系由等量的粒子和反粒子所构成,它们会相互湮灭殆尽,而只遗留下辐射。我们可以从从未观测到这种湮灭辐射的证据得出结论,我们的星系完全是由粒子而不是由反粒子组成的。我们没有其他星系的直接证据,但是它们似乎很可能是由粒子构成的,而且在整个宇宙中存在粒子比反粒子的大约每10↑8个光子一颗粒子的过量。人们可以采用人择原理对此进行解释,但是大统一理论实际上提供了一种可能的机制来解释这个不平衡。虽然所有相互作用似乎都在C(粒子用反粒子来取代),P(右手改变成左手)以及T(时间方向的反演)的联合作用下不变,人们已经知道,有些作用在T单独作用下不是不变。在早期宇宙,膨胀给出非常明显的时间箭头。这些相互作用产生的粒子就会比反粒子多。然而它们产生的数量太过依赖于模型,使得和观测的相符根本不能当作大统一理论的证实。
  迄今为止的大部分努力是用于统一前三种物理相互作用,强核力、弱核力以及电磁力。第四种也就是最后一种的引力被忽略了。为这么做的一个辩护理由是,引力是如此之微弱,以至于量子引力效应只有在粒子能量远远超过任何粒子加速器的能量下才会显著起来。另一种原因是,引力似乎是不可重正化的。人们为了得到有限的答案,就必须作无限个无限扣除,并相应地留下无限个不能确定的有限余量。然而,如果人们要得到完全统一的理论,就必须把引力包括进来。此外,广义相对论的经典理论预言,在时空中必须存在引力场在该处变成无限强大的奇性。这些奇性在过去发生在宇宙的现在膨胀的起点(大爆炸),在将来会发生在恒星还可能宇宙本身的引力坍缩之中。关于奇性的预言表明经典理论将会失效。然而,在引力场强到使量子引力效应变得重要以前,似乎没有理由认为它会失效。这样,为了描述早期宇宙并对初始条件给出有别于仅仅借助人择原理以外的解释,则量子引力论具有根本的重要性。
  这样的一种理论对于回答如下问题也是不可或缺的:时间是否正如经典广义相对论所预言的那样,真的有起始而且可能有终结吗?抑或在大爆炸和大挤压处的奇性以某种方式被量子效应所抹平?当空间和时间结构本身必须服从不确定性原理时,这是个很难给出确切含义的问题。我个人的直觉是,奇性也许仍然存在,虽然人们在某种数学意义上可以把时间延拓并绕道这些奇点。然而、任何和意识或进行测量能力相关的时间的主观概念都会到达终点。
  获得量子引力论并和其他三类相互作用统一的前景如何呢?人们寄最大希望于把广义相对论推广到所谓的超引力。在这个框架中,携带引力相互作用的自旋为2的粒子,引力子可由所谓的超对称变换和其他一些具有更低自旋的场相关联。这种理论具有一个伟大的功绩,即它抛弃由半整数自旋粒子代表的〃物质〃和整数自旋粒子代表的〃相互作用〃之间的古老的二分法。它还具有的伟大优点是,量子理论中产生的许多无穷大会相互抵消。它们是否完全被抵消掉而给出一种不用做任何无限扣除的有限理论尚在未定之天。人们希望事情果真如此。因为可以证明,包含引力的理论要么是有限的,要么是不可重正化的,也就是说,如果人们要做任何无限扣除,那么你就要做无限个无限扣除,并且留下无限个相应的不能确定的余量。这样,如果在超引力中所有的无穷大都被相互抵消掉,我们就得到一种理论,它不仅完全统一了所有的粒子和相互作用,而且在它不再有任何未确定的重正化参数的意义上是完整的。
  尽管我们还没有一种合适的量子引力论,且不说把它和其他相互作用统一起来的理论,但是我们的确知道这种理论应有的某些特征。其中之一和引力影响时空的因果结构的事实相关,也就是引力决定哪些事件可以是因果相关的。黑洞便是广义相对论的经典理论中的一个例子。黑洞是时空的一个区域,这个区域中的引力场是如此之强大,以至于任何光线或者其他信号都被拖曳回到这个区域,而不能逃逸到外部世界去。黑洞附近的强大的引力场引起粒子反粒子对的创生,粒子对中的一颗粒子落进黑洞,而另一颗逃逸到无穷远去。逃逸的粒子显得是从该黑洞发射出来似的。在离开黑洞远处的观察者就只能测量到发射出来的粒子,而且由于他不能观察到落到黑洞中去的粒子,所以不能把这两者相关联。这表明逃逸的粒子具有超越通常和不确定性原理关联的额外的随机性和不可预见性。在正常情况下,不确定性原理的含义是,对于一颗粒子人们要么能明确预言其位置,要么能明确预言其速度,要么能明确预言其位置和速度的某种组合。这样,粗略地讲,人们做明确预言的能力被减半了。但是在从黑洞发射出的粒子的情形,就人们不能观察在黑洞中会发生什么而言,人们既不能明确预言发射出的粒子的位置,也不能明确预言其速度。人们所能给出的一切只是以一定模式发射出的粒子的概率。
  因此,即便我们找到了一种统一理论,我们似乎也只能作统计的预言。我们还必须抛弃只存在我们所观察的唯一宇宙的观点。相反的,我们必须采纳这样的一幅图像,存在所有可能的宇宙的系综,这些宇宙具有某种概率分布。这也许可以解释为什么宇宙在大爆炸时以一种几乎完美的热平衡的状态开始。这是因为热平衡对应于最大数目的微观形态,因此具有最大的概率。我们可以修正伏尔泰的哲学家潘格洛斯'11'的名言:〃我们生活在所有可以允许的最有可能的世界中。〃
  '11'译者注:潘格洛斯(Pangloss)是伏尔泰小说《赣第德》中的人物,他是一名乐观主义的哲学家,经常使赣第德陷入困难境地。他的名言为:〃我的生活在所有可以允许的最好的世界中。〃伏尔泰用他来影射卢梭。
  我们在不太远的将来找到一种完整的统一理论的前景如何呢?在我们每一次把自己的观测推广到更小尺度和更高能量时,我们总是发现了新的结构层次。本世纪初,具有3×10↑…2电子伏典型能量的粒子的布朗运动表明,物体不是连续的,而是由原子所组成的。之后不久,人们发现原先以为看不见的原子是由绕着一个核的电子所构成,其能量为几电子伏。人们接着发现核子是由所谓的基本粒子质子和中子组成,它们由数量级为10↑6电子伏的核键捆绑在一起。这个故事的最新插曲是,我们发现质子和中子是由夸克所组成,它们由能量为数量级10↑9电子伏的键捆绑在一起。现在我们需要极其庞大的机器并花费大量金钱去进行结果不能预言的实验,理论物理在这条路上已经走得如此之远,真是令人不胜感慨。
  我们过去的经验暗示,在越来越高的能量下也许存在结构层次的无限序列。这种盒子套盒子的无限层次正是中国在〃四人帮〃时代的正统说法。然而,引力似乎应提供一种极限,但那只是在10↑…33厘米的非常短的距离尺度或者10↑28电子伏的非常高的能量下。在比这更短的尺度下,人们预料时空行为不再像光滑的连续统那样,由于引力场的量子起伏,它会采取一种泡沫状的结构。
  在我们现在大约为10↑10电子伏和10↑28电子伏的引力截断之间还有一个广阔的待探索的区域。正如大统一理论那样,假设在这个巨大的区间只有一二个结构层次也许是天真的。然而,存在一些乐观的理由。至少在此刻情形似乎是,引力只能在某种超引力理论中可与其他的物理相互作用统一。只存在有限数目的这种理论。尤其是存在一种最大的理论,即所谓的N=8的推广超引力。它包括一种引力子,八种自旋为3/2的叫做引力微子的粒子,二十八种自旋为1的粒子,五十六种自旋为1/2的粒子,还有七十种自旋为0的粒子。它们就是具有这么大的数目,还是不足以计及我们似乎在弱和强相互作用中观测到的所有粒子。例如,N=8的理论有二十八种自旋为1的粒子。这对于解释携带强相互作用的胶子以及携带弱相互作用的四种粒子中的二种已经足够,但是不能说明其余的两种。因此人们不得不相信,观测到的粒子中的许多或者大多数,例如,胶子或者夸克不像它们此刻所显示的那样,不是真正基本的,它们是基本的N=8粒子的束缚态。如果我们基于目前的经济趋向作计划,在可见的将来或者甚至永远都不太可能拥有足够强大的

小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架