《清史稿》

下载本书

添加书签

清史稿- 第142部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!

  中距太阳距地心一千万。

  中距太阴距地心一千万。

  中距太阳视半径一十六分六秒。

  中距太阴视半径一十五分四十秒三十微。

  朔应一十五日一二六三三。

  首朔太阴交周应六宫二十三度三十六分五十二秒四十九微。馀见日躔、月离。

  推月食法
  求天正冬至,
  求纪日,
  求首朔,
  求太阴入食限,并同甲子元法。视某月太阴平交周入可食之限,即为有食之月。交周自五宫十四度五十一分至六宫十五度九分,自十一宫十四度五十一分至初宫十五度九分,皆可食之限。再于实时距正交详之。

  求平望,同甲子元法。

  求实望实时,先求泛时,用两日实行较,同甲子元求朔望法。次设前、后两时,各求日、月黄道实行。复用两时实行较,得实望实时。又以实时各求日、月黄道实行,视本时月距正交入限为有食。自五宫十七度四十三分至六宫十二度十七分,自十一宫十七度四十三分至初宫十二度十七分,皆有食之限。

  求实望用时,用实时太阳均数及升度求法,同甲子元法。比视日出入亦同。

  求食甚时刻,用平三角形,以一小时太阴白道实行化秒为一边,本时次时二实行较。一小时太阳黄道实行化秒为一边,实望黄白大距为所夹之角,求得对小边之角为斜距交角差。以加实时黄白大距,为斜距黄道交角。又以斜距交角差之正弦为一率,一小时太阳实行为二率,实望黄白大距之正弦为三率,求得四率,为一小时两经斜距。又以半径千万为一率,斜距黄道交角之馀弦、正弦各为二率,实望月离黄道实纬为三率,各求得四率,为食甚实纬南北与实望黄道实纬同。及距弧。又以一小时两经斜距为一率,一小时化秒为二率,食甚距弧为三率,求得四率为食甚距时。以加减实望用时,月距正交初宫、六宫为减,五宫、十一宫为加。得食甚时刻。

  求太阳太阴实引,置实望太阳引数,加减本时太阳均数,得太阳实引。又置实望太阴引数,加减本时太阴初均数,得太阴实引。

  求太阳太阴距地,用平三角形,以日躔倍两心差为对正角之边,以太阳实引为又一角,三宫内用本度,过三宫与六宫相减,过九宫与全周相减,用其馀。求得对太阳实引之边为勾。又求得对原不知角之边为分股,与二千万相加减,实引三宫内九宫外加,三宫外九宫内减。为股弦和与勾,求得股。与分股相加减,实引三宫内九宫外减,三宫外九宫内加。得太阳距地。又以实望月离倍两心差如法求之,得太阴距地。

  求实影半径,以太阴距地为一率,中距太阴距地为二率,中距太阴最大地半径差为三率,求得四率为本时太阴最大地半径差。又以六十九除之,为影差。又以太阳距地为一率,中距太阳距地为二率,中距太阳视半径为三率,求得四率为太阳视半径,与本时太阴最大地半径差相减。又加太阳最大地半径差,为影半径,又加影差,为实影半径。

  求太阴视半径,以太阴距地为一率,中距太阴距地为二率,中距太阴视半径为三率,求得四率,为太阴视半径。

  求食分,以太阴全径为一率,十分化作六百秒为二率,并径实影视太阴两半径并。内减食甚实纬,馀化秒为三率,求得四率为秒,以分收之,即食分。

  求初亏、复圆时刻,以并径与食甚实纬相加化秒为首率,相减化秒为末率,求得中率为秒,以分收之,为初亏、复圆距弧。又以一小时两经斜距为一率,一小时化秒为二率,初亏、复圆距弧为三率,求得四率为初亏、复圆距时,以加减食甚时刻,得初亏、复圆时刻。减得初亏,加得复圆。

  求食既、生光时刻,以两径较实影视太阴两半径相减之馀。与食甚实纬相加化秒为首率,相减化秒为末率,求得中率为秒,以分收之,为食既、生光距弧。求距时时刻,与初亏、复圆法同。食在十分以内,则无此二限。

  求食限总时,同甲子元法。

  求食甚太阴黄道经纬宿度,以一小时化秒为一率,一小时太阴白道实行为二率,食甚距时化秒为三率,求得四率,为距时月实行。以加减实望太阴白道实行,加减与食甚距时同。得食甚太阴白道经度。又置实望月距正交,加减距时月实行,得食甚月距正交。再求黄道经纬宿度,同月离。

  求食甚太阴赤道经纬宿度,以半径千万为一率,食甚太阴距春、秋分黄道经度正弦为二率,食甚太阴黄道经度不及三宫者,与三宫相减;过三宫者,减三宫;过六宫者,与九宫相减;过九宫者,减九宫。食甚太阴黄道纬度馀切为三率,求得四率为馀切,检表得太阴距二分弧与黄道交角,以加减黄赤大距,食甚太阴黄道经度九宫至三宫,纬南加,纬北减,皆在赤道南,反减则在北。三宫至九宫加减反是。为太阴距二分弧与赤道交角。又以太阴距二分弧与黄道交角之馀弦为一率,半径千万为二率,食甚太阴距春、秋分黄道经度之正切为三率,求得四率,为太阴距二分弧之正切。又以半径千万为一率,太阴距二分弧与赤道交角之馀弦为二率,太阴距二分弧正切为三率,求得四率为正切,检表为距春、秋分赤道经度。加减三宫九宫,食甚太阴黄道经度不及三宫,与三宫相减,过三宫者加三宫。过六宫者,与九宫相减,过九宫者加九宫。得食甚太阴赤道经度。求纬度宿度,同甲子元法。

  求初亏、复圆黄道高弧交角,以半径千万为一率,黄赤大距正弦为二率,影距春、秋分黄道经度正弦为三率,求得四率为正弦,检表得影距赤道度。影距春、秋分度数与太阳同,太阳在赤道北,影在南,太阳在赤道南,影在北。又以影距春、秋分黄道经度馀弦为一率,黄赤大距馀切为二率,半径千万为三率,求得四率为正切,检表为黄道赤经交角。乃用弧三角形,以北极距天顶为一边,影距赤道与九十度相加减为一边,北则减,南则加。初亏、复圆各子正时刻过十二时者,与二十四时相减。变赤道度,各为所夹之角,求得对北极距天顶之角。各为赤经高弧交角,以加减黄道赤经交角,太阴在夏至前六宫,食在子正后则减,为限西。食在子正前则加,加过九十度,与半周相减,为限东。不及九十度,则不与半周相减,变为限西。在夏至后六宫反是。各得黄道高弧交角。若食在子正,影在正午,无赤经高弧交角,则黄道赤经交角即黄道高弧交角。太阴在夏至前为限西,后为限东。

  求初亏、复圆并径高弧交角,以并径为一率,食甚实纬为二率,半径千万为三率,求得四率为馀弦,检表为并径交实纬角。如无食甚实纬,即无此角,亦无并径黄道交角。又置九十度,加减斜距黄道交角,得初亏、复圆黄道交实纬角。食甚月距正交初宫、六宫,初亏减,复圆加。五宫、十一宫,初亏加,复圆减。各与并径交实纬角相减,为初亏、复圆并径黄道交角。并径初交实纬角小,距纬南北与食甚同。大则反是。以加减黄道高弧交角,亏限东,复圆限西,纬南加,纬北减。初亏限西,复圆限东,加减反是。各得并径高弧交角。如无并径黄道交角,则黄道高弧交角即并径高弧交角。

  求初亏、复圆方位,即以并径高弧交角为定交角,求法同甲子元。但以并径高弧交角初度初亏在限东为正下,限西为正上;复圆在限东为正上,限西为正下。据京师北极高度定,与甲子元法同。

  求带食分秒,用两经斜距,不用月距日实行,馀与甲子元法同。

  求带食方位,用带食两心相距,不用并径求诸交角,如初亏、复圆定方位。食甚前与初亏同,食甚后与复圆同。

  求各省月食时刻方位,理同甲子元法。

  绘月食图,同甲子元法。

  日食用数
  太阳光分一十五秒,馀见日躔、月离、月食。

  推日食法
  求天正冬至,
  求纪日,
  求首朔,
  求太阴入食限,并同月食,惟不用望策,即为逐月朔太阴交周。视某月入可食之限,即为有食之月。交周自五宫八度四十二分至六宫九度一十四分,又自十一宫二十度四十六分至初宫二十一度一十八分,皆可食之限。

  求平朔,
  求实朔实时,并同月食求望法,惟不加望策。视本时月距正交入食限为有食。自五宫十一度三十四分至六宫六度二十二分,又自十一宫二十三度三十八分至初宫十八度二十六分,为有食之限。

  求实朔用时,与月食求实望用时同。比视日出入,同甲子元法。

  求食甚用时,与月食求食甚时刻法同。

  求太阳太阴实引,
  求太阳太阴距地,并同月食。

  求地平高下差,先求本日太阴最大地半径差,法同月食。乃减太阳最大地半径差,得地平高下差。

  求太阳实半径,先求太阳视半径,法同月食。内减太阳光分,得太阳实半径。

  求太阴视半径,法同月食。

  求食甚太阳黄道经度宿度,求经度与月食求太阴白道法同;求宿度同日躔。

  求食甚太阴赤道经纬宿度,用黄赤大距,法同月食求太阴黄道。

  求黄赤及黄白、赤白二经交角,以食甚太阳距春、秋分黄道经度馀弦为一率,黄赤大距馀切为二率,半径千万为三率,求得四率为馀切,检表得黄赤二经交角。冬至后黄经在赤经西,夏至后在赤经东,如太阳在二至,则无此角。又以前所得斜距黄道交角,即为黄白二经交角。实朔月距正交初宫、十一宫,白经在黄经西;五宫、六宫,在黄经东。二交角相加减,为赤白二经交角。二交角同为东同为西者相加,白经在赤经之东西仍之。一为东一为西者相减。东西从大角。如减尽,则无此角。如无黄赤二经交角,则黄白即赤白,东西并同。

  求用时太阳距午赤道度,以食甚用时与十二时相减,馀数变赤道度,得用时太阳距午赤道度。

  求用时赤经高弧交角,用弧三角形,以北极距天顶为一边,太阳距北极为一边,赤纬在南,加九十度;在北,与九十度相减。用时太阳距午赤道度为所夹之角,求得对北极距天顶之角,为用时赤经高弧交角。午前赤经在高弧东,午后赤经在高弧西。若太阳在正午,则无此角。

  求用时太阳距天顶,以用时赤经高弧交角正弦为一率,北极距天顶之正弦为二率,用时太阳距午赤道度之正弦为三率,求得四率为正弦,检表得太阳距天顶。

  求用时高下差,以半径千万为一率,地平高下差化秒为二率,用时太阳距天顶之正弦为三率,求得四率为秒,以分收之,为用时高下差。

  求用时白经高弧交角,以用时赤经高弧交角与赤白二经交角相加减,得用时白经高弧交角。东西同者相加,白经在高弧之东西仍之。一东一西者相减,东西从大角。如无赤白二经交角,或无赤经高弧交角,则即以所有一角命之,东西并同。如二角俱无,或同度减尽,则无此角。食甚用时即真时。用时高下差与食甚实纬,南加北减,即食甚两心视相距。

  求用时对两心视相距角,月在黄道北,取用时白经高弧交角;月在黄道南,取用时白经高弧交角之外角,实距在高弧之东西,月在北则与白经同,在南则相反。皆为用时对两心视相距角。若自经高弧交角过九十度,纬南如纬北,纬北如纬南。

  求用时对两心实相距角,用平三角形,以食甚用时两心实相距为一边,即食甚实纬。用时高下差为一边,用时对两心视相距角为所夹之角,即求得用时对两心实相距角。

  求用时两心视相距,以用时对两心实相距角之正弦为一率,用时两心实相距为二率,用时对两心视相距角之正弦为三率,求得四率,即用时两心视相距。白经在高弧西,两心视相距大于并径者,或无食或未及等者,用时即初亏真时,在高弧东为已过及复圆真时。若小于并径,高弧西为初亏食甚之间,东为复圆食甚之间。

  求食甚设时,用时白经高弧交角东向前取,西向后取,角大远取,角小近取,远不过九刻,近或数分。量距用时前后若干分,为食甚设时。

  求设时距分,以食甚设时与食甚用时相减,得设时距分。

  求设时距弧,以一小时化秒为一率,一小时两经斜距为二率,设时距分化秒为三率,求得四率,为设时距弧。

  求设时对距弧角,以食甚实纬为一率,设时距弧为二率,半径千万为三率,求得四率为正切,检表得设时对距弧角。

  求设时两心实相距,以设时对距弧角之正弦为一率,设时距弧为二率,半径千万为三率,求得四率,即设时两心实相距。

  求设时太阳距午赤道度,
  求设时赤经高弧交角,
  求设时太阳距天顶,
  求设时高下差,
  求设时白经高弧交角,以上五条,皆与用时同,但皆用设时度分立算。

  求设时对两心视相距角,月在黄道北,以设时白经高弧交角与设时对距弧角相减,月在黄道南则相加,又与半周相减,馀为设时对两心视相距角。相减者,对距弧角小,实距在高弧之东西与白经同;对距弧角大则相反。相加又减半周者,实距在高弧之东西,恆与白经反。如两角相等而减尽无馀,或相加適足一百八十度,则无交角,亦无对设时两心实相距角,即以设时高下差与设时两心实相距相减,馀为设时两心视相距。若白经高弧交角过九十度,纬南如纬北,纬北如纬南。

  求设时对两心实相距角,
  求设时两心视相距,皆与用时同。

  求设时白经高弧交角较,以设时白经高弧交角与用时白经高弧交角相减,即得。

  求设时高弧交用时视距角,以设时白经高弧交角较与用时对两心实相距角相加减,即得。纬北为减,纬南为加。若白经高弧交角过九十度,反是。

  求对设时视行角,以设时高弧交用时视距角与设时对两心实相距角相加减

小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架