‘A可能属于B所表述的东西’与‘A可能属于所有的B’表示同样的意思“。
…… 283
59。偶然命题的换位律A 172
我们就有两个等值式:“每一个b可能是a”
或者意味着“对于所有的c,如果每一个c是b,那末,每一个c可能是a”
,或者意味着“对于所有的c,如果每一个c可能是b,那末,每一个c可能是a”。
如果我们是在可能性这个意义上来解释“可能”
一词,那末,我们就得出公式:131。
QMAbacCAcbMAca和‘132。
QMAbacCMAcbMAca,‘它们在我们的模态逻辑系统中都是真的,而从它们就容易推出128和126式来。
但是,如果是在偶然性意义上来解释“可能”一词,(亚里士多德似乎正是这样认为的)
,那末,上面所得的公式就成为错误的了。
59。偶然命题的换位律A亚里士多德在继续阐述他的模态命题的换位律时,于《前分析篇》的开始部分说道,全称否定的偶然命题不能换位,然而特称否定的偶然命题却是可以换位的。
①
这个奇怪的断定要求细心地加以研究。
我首先不是从我的模态系统的观点,而是从亚里士多德和所有逻辑学家都接受的基本模态逻辑的观点去批判地讨论这个断定。
按照亚里士多德的意见,偶然性是既非必然也非不可能
①《前分析篇》,i。
3,25b14,(继续第236页注③引述的原文)“而如果说的是作为最常发现的和事物的本性的可能,(按照我们给可能所下的定义)
,那末关于否定判断的换位的情况却不是这样,因为全称否定判断不能换位,而特称否定判断可以换位。“
…… 284
272第八章 亚里士多德的模态三段论
的。
偶然性的这个涵义是明显地包含在亚里士多德的有点臃肿的定义之中,并且为亚历山大精确地证实了的。
①我们重复这一点是为了保证充分的清晰性:“‘p是偶然的’,它的意思与‘p不是公然的并且p不是不可能的’完全相同”
,或者用符号表示;48。
QTpKNLpNLNp。
这个公式显然等值于表达式50。
QTpKMpMNp,即:偶然的东西是可能存在也可能不存在的。
公式48和50是非常一般的并且适用于任何命题p。
让我们将它们用于全称否定命题Eba。
我们从50得出:13。
QTEbaKMEbaMNEba。
因为NEba等值于Iba,我们又有:134。
QTEbaKMEbaMIba。
现在我们从换位律:123。
CMEbaMEab和12。
CMIbaMIab可以推出:MEba等值于MEab,而MIba等值于MIab;由此我们有:135。
QKMEbaMIbaKMEabMIab。
这个公式的第一部分KMEbaMIba等值于TEba,第二部分KMEabMIab等值于TEab;由此,我们得出结论:136。
QTEbaTEab。
这个公式表示,偶然的全称否定命题是可以换位的。
①参阅上面的第45节,特别是第190页注④和第192页注①。
…… 285
59。偶然命题的换位律A 372
为什么当亚里士多德有其为此所需的一切前提的时候,会看不到这个简单的证明呢?
这里我们接触到他的模态逻辑的被污染的另一部分,这比亚里士多德的必然性观念使之所受的创伤更难医治。
现在让我们看一看,他是企图怎样否证公式136的。
亚里士多德非常一般地陈述过:带有对立主目的偶然命题,它们的主目可以相互交换。
下述例子将说明这个不十分清楚的公式。
“偶然地b是a”
,可以与“偶然地b不是a”
互换;“偶然地每一个b是a”可以与“偶然地每一个b不是a”互换;“偶然地有些b是a”可以与“偶然地有些b不是a”互换①。
这一类的换位,我按照大卫罗斯爵士的意见,称之为W“补充的换位”。
②
亚里士多德会由此断定,命题“偶然地每一个b是a”与命题“偶然地任何b都不是a”可以互换,或者用符号表达:(ι)QTAbaTEba(为亚里士多德所断定)。
这是他的证明的出发点,这个证明是用归谬法作出的。
他实际上是这样证明的:如果TEba与TEab可以互换,那末,TAba与TEab也可以互换,而因为TEab与TAab可以互换,我们就得出错误的结果:
①《前分析篇》,i。
13,32a29,“由此产生,所有关于可能的前提都可以互相换位。
我指的不是肯定前提可以换成否定前提,而是指可以转换为和它相互反对的具有肯定形式的前提,例如:‘可能属于’换成‘可能不属于’。
而也可以将‘可能属于所有的’换成‘可能不属于任何一个’或‘不属于所有的’,也可以将‘可能属于有些’换成‘可能不属于有些’“。
②大卫罗斯,所编《前分析篇》,第4页。
W
…… 286
472第八章 亚里士多德的模态三段论
()QTAbaTAab(为亚里士多德所排斥)
①。
G对这样的论证我们需要说些什么呢?
十分显然,亚里士多德所采用的偶然性定义引伸出偶然的全称否定命题的可换位性。
因此,否定这种换位必定是错误的。
因为它在形式上是正确的,错误一定出于前提,而由于这种否证所根据的有两个前提:被断定的公式(ι)和被排斥的公式()——因此,或者G断定(ι)是错误的,或者排斥()是错误的。
然而这不可能G在基本模态逻辑的范围内加以决定。
在基本模态逻辑的范围内,俄们只能说,被断定的公式(ι)的真不是由所采用的偶然性定义所证实的。
从定义:50
QTpKMpMNp通过替代pNp,我们得出公式QTNpKMNpMNNp,而由'于按照基本模态逻辑命题9,MNNp与Mp等值,我们有137。
QTNpKMpMNp。
从50和137推出结果:138。
QTpTNp,将这个结果运用于前提Eba,我们得出:139。
QTEbaTNEba或140。
QTEbaTIba,
①《前分析篇》,i。
17,36b35,“首先应该证明的是:可能属于的否定判断不能换位。
例如,如果A可能不属于任何一个B,那并不必然地B可能不属于任何一个A。
假设是这样,而且假设B可能不属于任何一个A,由于可能属于的肯定判断允许将它换成否定的与它相矛盾的或相反对的判断,而B可能不属于任何一个A,那显然,B还可以属于所有的A。
但这是不正确的,因为如果这种东西可能属于所有的那种东西,则不是必然地所有那种东西可能属于这种东西。
所以,可能属于的否定判断不能换位。“
…… 287
59。偶然命题的换位律A 572
因为NEba与Iba意义相同。
我们看到,QTEbaTIba从偶然性定义得到证实,但QTEbaTAba未得证实。
这后一公式却被亚里士多德错误地断定了。
如果我们考察了亚里士多德对用归谬法证明TEba的换位律的企图所作的反驳,我们就会更清楚地了解到这个错误。
这种企图就是:如果我们假定偶然地任何b都不是a,那末,偶然地任何a都不是b,因为,如果后一命题是假的,那末,必然有些a是b,而由此必然有些b是a,这和我们的假定是相矛盾的①。
用符号形式表示就是:如果假定TEba是真的,那末,TEab也应当是真的。
因为从NTEab可推出LIab,从而又推出LIba,这与假定TEba是不相容的。
亚里士多德驳斥了这个论证,正确地指出LIab不是从NTEab推出的②。
确实,按照48式,我们有等值式:141。
QTEabKNLEabNLNEab或者142。
QTEabKNLEabNLIab。
①《前分析篇》,i。
17,37a9,“但是用归谬法不可能证明这些命题的可换位性。
例如,如果谁允许自己作出这样的推论:由于B可能不属任何一个A,这是假的,那B不可能不属于任何一个A,这就是真的,因为一个命题是另一个命题的矛盾。
但是如果这是正确的,那末B就必然属于有些A,所以,A也必然属于有些B,就是真的。
但这是不可能的……“。
②《前分析篇》,i。
17,37a14(继续上面的注释)。
“因为如果B不可能不属于任何一个A,那末,不是必然地它就属于有些A,因为表达式‘不可能不属于任何一个’可以在两重意义上使用:第一种意义是必然属于有些,第二种意义是必然不属于有些。”
…… 288
672第八章 亚里士多德的模态三段论
于是将QNKNpNqHpq,即所谓“德摩尔根定律”之一,①用W于NTEab,我们有公式:143。
QNTEabHLEabLIab。
可以看到,借助于143式和断定命题CCHpqrCqr,我们可以从LIab推出NTEab,但是逆换的蕴涵式却不能成立,因为从NTEab,我们只可能推出析取式HLEabLIab,从这个析取式自然不能推出LIab。
这个企图要作的证明是错误的,但不能由此得出被证明的结论是假的。
在这化归的过程中,有一点值得我们注意,代替143式,亚里士多德明显地断定了公式:()QNTEabHLOabLIab,Q这个公式不能用定义48加以证实。
对于NTAab的情况也相同,他断定了公式:②
(μ)QNTAabHLOabLIab,它仍然不能用48式加以证实,而正确的公式是14。
QNTAabHLOabLAab。
从()
和(μ)
,亚里士多德可以推出等值式QNTAabNTEab,Q而后推出(ι)
,而(ι)不是由他的偶然性定义所证实的。
①它们真正地应该称为奥卡姆定律,因为据我所知,奥卡姆第一个陈述了它们。
见:波埃纳尔:《经院哲学中德摩尔根定律的历史的考察》,BemerkungenW
zurGeschichte
der
De
Morganschen
Gesetze
in
der
Scholastik,载《哲学文库》(《Archiv
für
Philosophie》)
,1951年9月,第15页注。
②《前分析篇》,i。
17,37a24,“因此,‘可能属于所有’以及:‘必然属于有些’和‘必然不属于有些’相反对”。
…… 289
60。纠正亚里士多德的错误A 772
60。纠正亚里士多德的错误A亚里士多德的偶然三段论的理论充满着严重的错误。
亚里士多德从他的偶然性定义没有得出正确的结论,并且他否定了全称否定偶然命题的可换位性,虽然这种可换位性显然是可以允许的。
但是,他的威望是这样的高,以致很有才能的逻辑学家们在过去都不能看出这些错误。
很明显,如果有人(例如,阿尔布列希特贝克尔)接受了以p作为命题变项的W定义:48。
QTpKNLpNLNp,那末,他也应当接受公式:141。
QTEabKNLEabNLNEab,这个公式是从48式通过替代pEab而推出的。
而因为通过正'确的逻辑变换,公式141产生断定命题143。
QNTEabHLEabLIab,他也应当接受143式。
但贝克尔为了偏心于自己虚构的产物即所谓“结构的公式”
,却排斥了这个断定命题。
①
前一节的评述是从基本模态逻辑的观点作出的,而基本模态逻辑是一个不完整的系统。
现在让我们从四值模态逻辑的观点来讨论这个问题。
从亚里士多德的偶然性定义我们得出结果138式,
①参阅A贝克尔,《亚里士多德的可能性推论的学说》第14页,那里公式WT1=48(用另一种符号记述的,不过带有命题变项P)是被接受的。
而在第27页,公式143是被排斥的。
…… 290
872第八章 亚里士多德的模态三段论
QTpTNp,从它我们可以推出蕴涵式:145。
CTpTNp。
现在我们从前提:51
CδpCδNpδq(C—N—δ—p系统的公理)
146。
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。
赞一下
添加书签加入书架