《自然哲学》

下载本书

添加书签

自然哲学- 第5部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
程变得没有必要。人们发现,为了计算例如一个立方体的体积,只需要量出其一条边;量出三角形的两个角就得到了第三角。在这些例子中,预料的结果得到确证,就肯定了普遍假定的正确性。现在假如这些普遍的假定连同可以由之而导出的全部命题,只就它们相互之间的关系来考虑,同时又完全不问在它们中出现的词或符号的意义,那么我们就得到一种“纯粹的”几何学,或一种纯粹形式的公理与定理系统,它缺乏内容,从而不是真正的命题而是所谓的命题函数。一旦掌握了这种观念,数学家就能想出任何数目的这类系统,并研究它们内部的关系。而自然研究者就能检验它们的适用性——也就是说,他能弄明白是否存在任何种类的自然对象,这种对象能被用来填补公理所具有的空虚的命题形式,从而得到真实的命题。如果找到了,那么从这些公理演绎出来的定理显然也是真实的了。
  彭加莱认为:我们应当总是在各种可能的几何定理中去追求那种最简单的,从而宁可要欧几里得几何。但是,事实上更重要或更方便的是要这样地来选择约定,即当这些约定应用于自然时——也就是说,从纯粹几何转变为物理几何时——结果会形成最简单的可能的物理系统(如果彭加莱能活着经历到物理学最近的发展,那他就会欢迎非欧几何在描述自然中的应用了)。
  从纯粹几何到物理几何的转变对应于从语言理论到语言应用的转变。纯粹几何就是物理几何的语法。
  在描述自然时,人们可以把例如“直线”这一术语用于这样一些结构物,这些结构物遵守支配欧几里得直线的那些公理。在这种情况下,三个这样的结构物所形成的三角形其三内角之和根据定义就等于180°。但从1919年以来,我们就知道对于天文学上光线的情况,这一条件不是始终得到满足。虽然如此,我们还是能够规定把“直线”理解作象光线、绷紧的弦等等之类的结构物。我们还知道,对于天文学上光线的情况,这一条件也不是始终充分的。虽然如此,我们还是可以说,所谓“直线”指的就是光线、绷紧的弦之类的结构物。而这就意味着我们宁可惜助于非欧几何来描述自然。两种可能性都是存在的;有些哲学家主张只有前一种才对应于直线的“真实的性质”,这种意见是没有意义的。无论何种情况,我们一定得通过定义规定我们认为是“直线”的东西。而这种规定,或日决定,在原则上是完全任意的。
  至于那种宣称几何学的基本概念——象直线概念——是不可定义的,它们的内容和普遍性都独立于物理经验而由“纯粹知觉”所给出,这种先天观点是经不住批判的审查的。恰恰相反,这些基本概念在其原始形式下所指的只不过是一些特殊种类的物理结构物。

 ̄文〃√

 ̄人〃√

 ̄书〃√

 ̄屋〃√

 ̄小〃√

 ̄说〃√

 ̄下〃√

 ̄载〃√

 ̄网〃√

第七章 四维世界

  上面我们得到了这样的结论:说所有对象都参与的空间变形是毫无意义的。针对这种论点,可以提出反驳说:虽然这种变形不一定会造成量值上可感知的变化,但却有可能造成物理行为的变化,只要这种变化不被那些有关变形前后自然常量值的特殊假定所排斥。可是只要追究一下这些常量是如何发现的,我们就看到这是由建立各种重合之间联系而实现的——这种联系牵涉到重合的同时发生。(例如,当温度计的水银柱升到标尺上某一定刻度的同时,电流计的指针也必须指向某一确定的读数。)因此,我们只需要再加上这样一条:各相邻重合之间的同时关系不受变形的影响。这样增加之后我们就能够十分肯定地说,观察不能产生另外的常量或自然律,而且所假定的变化并不是实际的变化,只是改变了一种说法而已。因此,其结论是自然的描述只是一个时空性的重合关系问题。这一命题的意义和范围,可以用一种在三度空间坐标之外引入时间作为第四坐标的图示法——闵可夫斯基的方法,最清楚地表示出来。
  这样描述出来的世界是一个由世界线(World…lines)所贯串的四维连续域,其中每条线都是某个点(质点或能包)的运动的象。由于世界线代表运动,四维模型的一个变形就意味着各个运动状态的变化,例如,一个粒子从静止或匀速直线运动状态变为某种曲线的不规则运动状态。现在,正象我们已经看到的那样,由于变形根本不表示一种真正的变化,而仅仅只是表示了一种说法的改变,那么其结果就是,无论我们说一个粒子处于静止位置还是说它在作某种运动,也都只不过是说法不同而已。实际上,粒子的运动类型完全取决于参考系的选择。
  用世界线所作的描述只限于那些能满足“原始同一性”①条件的对象,或者说,只限于那些可以有实义他说在有限的时间内一直保持“同一”的对象。在这个模型里,重合关系由世界线的截点或切线来表示。一个这种型式的模型可以经受完全任意的畸变,而且只要世界线的拓扑关系没有弄乱,它可以同样适当地代表实在。

① “原始同一性”概念是由库特·菜温在他的《物理学、生物学和进化史之起源的概念——科学原理之比较研究》(柏林,施普林格1922年版)一书中引入的。

  世界线描述粒子的运动;但决不能误认为世界线就是粒子的径迹。例如,我们不能说一个点通过它的世界线,也不能说代表实际现实瞬时状态的三维截面在四维世界中沿着时间轴漫游。因为这样的一种漫游一定发生在时间中,而时间已经被表示在模型之中,不能再从外面引人。因此,下述论据——即对世界的四维描述证明了时间的非实在栓,而且还把世界描绘成僵化的静止的存在——就都是荒谬的了。另一方面,对比于附加时间说明的三维表示法,有很多理由把四维世界看作是绝对的,因为前者含有较多的任意性,从而与描述方法有关。三维表示法与四维描述相比就象是物体的透视像与塑造的复制品之间的比较。相对论(它更有理由被称为绝对论)的研究方法不允许观察者有任何程度的主观性或任意性。相反,相对论比以前的任何描述方法都表现出更多的客观性。
  我们把“运动”一词的运动学意义和动力学意义区别开来。按前一种解释,运动定义为位置在时间中的变化,而由于关于位置的数据只能相对于某个参考架给出,因此,根据定义,运动就是相对的。另一方面,按动力学的解释,运动是根据该运动出现于自然律中的方式来定义的。在此意义上,很有可能的是,与某一确定物体(诺伊曼的a物体)的重合关系在所有运动定律中都发生着作用。在这种情况下,这些物体将不得不被描述为“处于静止状态”,而与之有关的运动则被描述为“绝对的”运动,因为它们将能根据自然律而被区分开来。这样,当广义相对论主张说,一切运动即使是在动力学的意义上说来也都是相对的,那么这并不是一种同语反复的、分析的命题,而是对于下列事实的一个陈述:对任一任意运动,没有哪个参考架占有优先的地位。
  另一方面,在牛顿的物理学中,虽然并没有选择单个的构架或物体,但却选了其中某一群,即所有相对于恒星处在静止位置的或处于匀速直线运动状态的东西。我们把后一群参考系称作伽利略系或惯性系;相对于这群参考系,伽利略形式的惯性原理同牛顿物理学的所有其他定律一样均为真。之后,“空间以太”变成了唯一优先的参考架。但当人们发现一切伽利略参考系对所有力学过程和所有电磁过程(光的传播)同样有效时(爱因斯坦的狭义相对论。1905),“空间以太”又失去了其特殊地位。由于不可能谈什么与以太粒子的重合关系,并从而谈不到以大的“原始同一性”,于是就说明,实体概念不能应用于真空——这是一个具有巨大哲学重要性的结论。
  在牛顿体系及1905年的“狭义相对论”中,加速运动与曲线运。动都具有绝对的性质。只是1915年的“广义相对论”才取消了这一绝对的性质并随同取消了特殊物体群的优先地位,这样就为更满意地满足因果性的要求开辟了道路。无论是牛顿体系还是狭义相对论都没有为惯性系的特殊区别给出任何理由。
  为做到这一点,爱因斯坦不得不试图这样来构写惯性定律:不参照于特殊的物体群(惯性系),而只参照于现存的物体的实际位形。这样做之所以可能,乃是在于下列这一为当时物理学所忽视的极端惊人的事实,这一事实是,某一物体惯性的度量(它的惯性质量)恰好等于这样一个量,该量被用于量度唯一地依赖于物体位形的那种效应(即所谓引力效应)。借助于这一事实,爱因斯坦成功地发现了一条把引力现象与惯性现象都包括进去的定律(并表明这二者根本上是同一样东西)。其结果,不但取消了一切特殊的参考架,废除了限定的参考系,而且实现了世界图象的极大简化。
广义相对论的基础
  新的运动定律是一种微分定律——换句话说,它把粒子的运动表示为不依赖于世界的位形而唯一地依赖于在该粒子直接邻域内存在的可测量的关系,而这一可测量关系则只是间接地受世界位形的制约。这样,这种运动定律表达了粒子的运动和时间与长度的测量结果之间的关系,而这些测量被假定为是在粒子直接邻域内进行的。而且这些测量通常被指称为关于该处的“空间曲率”或“邻域引力势”的命题。
  这种对于实际的测量方法的参照是理解我们前面所勾画的世界图象的意义的唯一途径,对于这点无论怎么强调也不会过分。
  为建立重合关系,假定了质点至少在一个很短的时间间隔内的原始同一性;而且在真正的重合与紧密接近之间不可能作出严格的区别。此外,全部对重合关系的经验都被一个连续的知觉场所统一。因此,经验的世界被赋予了一种十分特殊的结构,这一结构也许可以用这样的话来构写:对于紧密接近的概念赋予了某种特殊的物理意义,或者换句话说,长度的某个确定的数量级实际上具有了一种特殊性,在该特许的范围之内,根本不可能谈到什么任意的变形。借助四维格式描述实在,是从心理空间(视觉空间、触觉空间等等)中构造出物理空间来的结果。但是,那些心理空间却根本不是相对的。在这些空间的小区域内,长度与运动都可以在绝对的意义上来论述,并不类似于以重合关系为基础的情况。在这些小区域内,欧几里得几何的应用就不仅是一种任意的约定了。虽然如此,对于更大或更小的量值,亦即对于天文的或原子的尺度,究竟应该构造什么样的几何学,这个问题就不再能由心理学而必须纯粹由物理学来决定了。

第八章 约定论批判

  惯性律陈述:一个不受干扰的物体在相等时间内经过相等的距离。
  要确定“相等的时间”是什么意思,单靠纯粹心理上的时间计算是不够的,因为经验告诉我们这种计算并不能导致精确的或客观的命题。因此,在科学上,借助于运动的概念——尤其是周期运动的概念——把时间的度量还原为空间的度量。于是,我们的时间单位,首先就是借助于具体定义,即地球自转周期,来确定的。这一定义并不完全使人满意,因为它妨碍我们讲到地球自转的变慢。天文学家会认为地球自转变慢这一事实就证明他们是从另一种时间单位的定义出发的,即从这样一个约定出发:时间单位的选择必须使自然律的构写尽可能地简化。
  当自然律被以这种方式应用于基本概念的定义时,那就显得好象自然律本身只不过是一种定义或一种任意的约定了,而定义或约定并不告诉我们关于实在的任何东西。这种把一切自然律仅仅看成是同义反复的约定的观点称为“约定论”。我们将以惯性律为例来清楚地表明这一观念的错误。虽然“相等的时间”被定义为一个不受干扰的物体经过相等距离的那些时间间隔,但“每一个不受干扰的物体在相等的时间内经过相等的距离”这句话并不是一个同义反复。它包含了一个能在经验上给以证明的陈述,即一切物体当不受干扰时其运动均表现出一种确定的量的规则性(对每两个这种物体而言,它们在两时间点之间即两时刻间所移过的距离之比是个常数)。为了确立这一定律的真实性,需要的是两个重合的同时性概念,而不需要时间相等性的概念。因此,后者可以以下述方式来建立:使所描述的规则性得到一种特别简单的表述。而上述约定恰恰就在于做到了这一点。
  如果分析一下“不受干扰的物体”这一概念,就可看到似乎还存在着另一种支持约定论解释的可能性。一个这样的物体必须被看作是一个不受任何力作用的物体。但是,如何才能认清不存在力这一事实呢?人们争辩说,只要通过物体的运动是直线的与匀速的这一事实就可以认识到。
  但是,如果这个不受干扰物体的定义被包括在惯性律的构写之中,后者就真的变成同义反复了。上述推理的错误来源于一个其自身倒很正确的观念,即认为物理量或值可以由该量所从属的那种度量型式来定义。由于力须由加速度来度量,即用直线匀速运动的变化程度来度量,因而使人们相信,发现偏离这种运动类型就等于断言“力”的存在。可是这种观点是个错误的观点,因为它忽略了下列经验事实,即这种运动的变化只有当在实验物体附近或紧邻存在其他物体时才会发生。因此,我们必须把不受干扰的物体定义为充分远离一切其他物体的物体。这样,惯性律就成为关于自然过程的一个意义重大的命题。为了完全地说明上述错误,理解力的概念的意义是必要的。
  在试图获得这一理解之前,我们先来简短地提一提那种想用因果原理来说明惯性律的愚蠢尝试。显然,我们不能下结论说,只

小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架