《人类理解论》

下载本书

添加书签

人类理解论- 第93部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!

    们亦都可以如此发问。

    5第二点,在共存关系方面我们有很少数的自明命题——第二点,所谓共存,就是两个观念间的必然联系,那就。。

    是说,在一个实体中,我们只要假设有此一个观念,同时彼一个观念亦必然要存在。关于这一类的契合或相违,人心只能在少数的情形下得到直接的认识。因此,在这一类知识方面,我们只能有很少量的直觉知识。因为这种缘故,所以我们在这方面,并没有许多自明的命题。不过有一些命题仍是自明的;就如,一个物体所占的空间必然等于它底表层以内的内容,因此,这个观念便附加在物体底观念上,因此,我想,“两个物体不能在同一空间存在”。这个命题就是一个自明的命题。

    6第三点,在别的关系方面,我们可以有自明的命题——第三点,说到各种情状底关系,则数学家只在“相等”

    这。。。。。

    一关系方面,已经构成了许多的公理;就如从“等数中减了等数,余数亦相等”就是一例。这一类命题虽然被数学家认为是公理,而且是毫无问题的真理,可是人们在一考察之下就会知道,这些命题底自明性并不比特殊命题底自明性更为大一点,因为我们亦一样可以说,“一加一等于二,”你如果从一手底五指上减去二,而且从另一手底五指上亦减去二,“余数亦相等”。在数目方面,成千弄万的这些命题,在一听之下,就能强迫你底同意,而且它们底明显性纵不比那些数学公理底明显性大,至少亦是相等的。

…… 253

    第七章 定理532

    7第四点,在实在的存在方面,我们全没有自明的命题——第四点,说到实在的存在,则它除了同“自我观念”和“第一存在者”

    first

    being底观念有联合而外,并不与我们任何其他观念有联合,因此,我们在一切别的事物底实在存在。。。。

    方面,既没有解证的知识,更没有自明的知识。因此,在这方面,我们便无公理可言。

    8这一类公理并不能十分影响我们底别的知识——其次,我们还可以考察,这些公认的公理在知识底别的部分上有多大影响。

    经院中有一些确立的规则说:“一切推理都是由预知和预觉来的”

    ,而且这些规则似乎以为一切别的知识底基础都是奠定在这些公理中的,似乎以为它们都是人所预知的。。。

    他们这种说法,在我看来,有两种意义,第一就是,这些公理是人心最先认识的一些真理,第二就是,我们知识底别的部分都是在它们上边建立着的。

    9它们所以无大影响,乃是因为它们不是我们首先认识的真理——第一点,我们根据经验知道,它们并不是人心首先认识的真理;这一点是我们在别处已经说过的(第一卷,第二章)。人人都可以看到,一个儿童先知道了,一个生人不是他底母亲,他底乳瓶不是他底杆子,然后慢慢才能知道,一件事物不能同时是此物而又不是此物。人人都可以看到,在数目方面,人心先完全熟悉了,相信了许多真理,然后慢慢才思想到数学家在辩论中有时所提到的那些概括的公理。这个理由是很明显的;因为人心所以能同意那些命题,既是因为它看到它底各个观念底契合或相违正是和文字所肯定的或否定的是一致的,而且是因为它知道每一个观念就是每一个

…… 254

    632第 四 卷

    观念,每两个清晰的观念不是同一的观念;因此,各种自明的真理,只要其所含的观念是人心所首先知道的,则那些真理亦是首先为人心所知道的。但是,首先存在于人心中的观念,分明是特殊事物底观念,有了这些特殊的观念,人心才慢慢得到少数概括的观念。因此,这些概括的观念是由感官所习见的物象得来,以概括的名称确立于人心中的。

    因此,我们是先接受了,分辨了特殊的观念,然后才能对它们得到知识;较小程度的类观念或种观念,则是跟着特殊的观念来的。

    因为抽象的观念,在儿童们或未受训练的人看来,并不如特殊的观念,那样明显,那样容易。成年人们所以看它们是容易的,只是因为熟惯的缘故,因为我们如果仔细一反想概括的观念,我们就会看到,它们只是人心底虚构和造作而且它们带有相当困难,呈现于心中时并不如我们常想的那样容易。

    若举三角形为例,则我们都知道,要想形成三角形的类观念(这还不是最抽象,最概括,最困难的观念)

    ,非需要一些辛苦和技巧不可,因为这个三角形观念不是单单斜角的,直角的,等角的,等腰的,不等边的;它是俱是而又俱非的。实际说来,它是一种不完全的东西,是不能存在的;在这个观念中,各种差异而互不相容的观念底各部分都混杂在一块。

    真的,人心在这种不完全的状态下,为便利传达、增加知识起见,常要急不暇择地求助于那些观念,因为它天然就倾向于这两种目的。不过我们正有理由猜疑这些观念只是我们缺点底标记了:至少这亦足以指明,最抽象,最概括的观念不是人心最初所熟习的,亦不是它底最初的知识所由以成立的。

    10因为我们知识底别的部分,并不依靠于它们——第

…… 255

    第七章 定理732

    二点,由前边所说的话得出的分明结论就是:这些受人赞美的公理并不是其他知识底原则和基础。因为事实上既然有许多别的真理同这些公理一样自明,而且有许多真理是在我们知道这些公理之前先已知道的,因此,那些真理就不可能是其他一切真理所由以演绎出的原理。我们所以知道一加二等于三,果然能够是凭着“全体等于分子之和”这样一些公理么?许多人虽不曾听到或想到人们用以证明一加二等于三的那个(或别的)公理,亦能知道一加二等于三,而且他底知识底确实程度,正和一个人知道“全体等于各部分总和”这个公理或其他公理似的。他们所以知道这一层,都是根据于同一的自明性底理由。因为不论有无这些公理,而那些观念底性质在他们看来是一样明显,一样确定的,因为这种性质是不用证明就可以为人所见到的。他纵然先知道了全体等于各部之和,他亦不能把“一加二等于三”这个命题知道得更为明白,更为确实些。因为“全体”和“部分”等等观念纵然较有优势,可是它们仍是较为含混的,仍是不易确定在人心中的,至于一,二,三,三个观念则正与此相反。人们既然主张,除了那些概括的原则自身以外,一切知识都依靠于概括的,天赋的,自明的原则,因此,我就可以问他们,“有什么原则可以证明,一加一等于二,二加二等于四,三乘二等于六呢”?这些命题自然是不经证明就能为我们所知道的,因此,我们看到,一切知识或者都不依靠于预知的,概括的公理(就是所谓原则)或者这些命题就都是原则。但是这些命题如果都是原则,则大部分的列数都成了原则了。我们如果以为我们关于一切清晰观念所形成的一切自明命题,都是

…… 256

    832第 四 卷

    原则,则人们在各时代所发现的原则底数目会成为无限的,至少亦会成了不能数的,而且有许多这些天赋的原则是他们终身所不知道的。但是不论这些真理出现于人心中的时期为迟为早,而我们确乎知道,它们所以为人所认识,只是因为它们底本有的明显性,而且它们是完全独立的,并不能为别的真理所证实,所证明。不但如此,而且较特殊的更不能为较概括的所证明,较简单的更不能为较复杂的所证明,因为较简单而较不抽象的真理,是最寻常为人所了解的,而且人们知道它们亦是较为容易,较为在先的。但是不论哪些观念是最明白的,而我们依然知道,一切命题底明显性和确实性所以能成立,只是因为人们能看到同一观念就是同一观念,并且确乎知道,两个差异的观念就是两个差异的观念。因为一个人底理解中如果有了一和二底观念,黄和蓝底观念,则他便确乎知道,一底观念就是一底观念,不是二底观念,黄底观念就是黄底观念,而不是蓝底观念。因为一个人心中如果有了清晰的观念,则他便不能把它们混淆了;倘或不然,则他底观念同时是淆乱的,同时又是清晰的,那就成了一个矛盾。我们底观念若不清晰,则我们底官能便无功用,而且我们亦就根本得不到任何知识。因此,不论哪一个观念自相肯定,不论哪两个完全清晰的观念互相否定,而人心在了解了那些名词以后,一定不能不同意那些命题是确乎真实的,而且在同意时,亦不疑虑,亦不需要证明,亦不顾及由较概括的名词所组成的那些命题——就是所谓公理。

    1这些概括的公理有什么功用——那么我们应该怎么说呢?这些概括的真理竟然会无功用么?决不会的;不过它

…… 257

    第七章 定理932

    们底功用也许不是如平常人所想象的那样。不过我们稍一怀疑这些公理底尊严,则不免被人反对,以为我们要把一切科学底基础都推翻了。因此,我们可以考察考察,这些公理和别的知识有什么关系,并且详细考察,它们合乎某种用途,不合乎某种用途。

    (一)

    由前边所说的看来,这些公理并不能用以证实或证明概括性较小的自明命题。

    (二)它们不是,而且也不曾是任何已成的科学底基础。

    我自然知道,经院派的人们大肆谈论各种科学和各种科学所依的基础,并且把这种谈论加以宣扬,但是不幸的很,我并不曾遇到那样一些科学,更不曾遇到一种科学是建立在“凡存在者存在”

    ,“同一事物不能同时存在而又不存在”这两条公理上的。我很愿意人告我,在这类概括公理上所建立的科学,在哪里可以找到;在我看来,并没有任何科学系统是在这一类公理上建立着的,而且离了这些公理,它们亦一样可以立得牢固。

    如果真有这样一种科学是建立在这些公理上的,则人们只要一指示给我这种科学,那我就感激不尽了。我相信,这些公理即在神学的研究和问题中,亦同在别的科学中有同样的用途。

    在这方面,它们亦可以止争,亦可以息辩。

    但是我总不相信,有人会说,基督教是建立在这些公理上的,或者说,我们对于基督教所有的知识是从这些原则演绎出的。

    基督教是由神圣的启示来的,没有启示,则这些公理永不能帮助我们知道这个宗教。我们如果找寻到一个观念,并且以它为媒介,发现出别的两个观念内的联系来,这就是上帝以理性底呼声给我们所完成的启示。在这种情形下,我们便知道

…… 258

    042第 四 卷

    我们以前所不知的一种真理。上帝如果直接告语我们以任何真理,那就是他借圣灵给我们所完成的启示,在这里,我们底知识亦有了进步。

    但是在两种情形下,我们底见识或知识,都不是由这些公理来的。在前一方面,是各种事物自身把知识呈现给我们,因为它们可以使我们看到它们底契合或相违,因而使我们看到它们所含的真理。在后一方面,上帝自身直接把知识授与我们,使我们看到他所说的真实义谛。

    (三)

    它们并不能帮助人们来推进科学,或新发现未知的真理。就如牛顿先生虽然在其永垂不朽的著作中,解证了各种命题,而且那些命题又都是世人从不知晓的许多新的真理,又都是数学中高深的真理;但是他所以能发现出这些真理来,并不是得力于“凡存在者存在”或“全体大于部分”等等公理。他所以能发现出那些命题之为正为确,并不是以这些公理为线索。他所以得知那些解证,亦并非由于这些公理;乃是由于他找寻出了中介的观念,把他所解证的命题中所表示的观念底契合与相违指示出来。在扩展知识,促进科学方面讲,人类理解到了他这种程度,亦就可以说是极其驰骋奔放的能事了。不过在这里,它们远不曾从人们对这些堂皇公理的思维得到任何帮助。

    对于这些命题,有传统信仰的人们,以为知识方面的任何一个步骤都得要一个公理底帮助,而且在建立各科学时所铺的任何一块石头,都不能离了概括的公理。

    但是他们只要能分别获得知识的方法,和传达知识的方法,只要能分别建立科学的方法,和以科学教人的方法,那他们就会看到,那些概括的公理并不是原始发明者底美妙建筑所依的基础,亦不是启发知识之秘密的钥匙。不过在后来,人们

…… 259

    第七章 定理142

    既然建立起经院来,而且各科学方面都有教师来以他人所发现者教人,因此,他们就往常应用各种公理,或奠定一些自明的命题。他们既把这些命题确立在他们学生底心中,使他们认这些命题为无可致疑的真理,因此,如果有特殊的例证不是他们学生心中所熟悉的(如他们所谆谆教人的那些概括的公理)

    ,他们便要借机应用自明的命题,使学生们相信那些特殊例证中的真理。

    不过这些特殊的例证,在仔细反省之后,对于理解是一样自明的,正如人们用来证实它们的那些概括的公理是一样的:而且原始发明者也是在那些特殊的例证中发见真理的,并不曾求助于这些概括的公理。因此,任何人只要肯注意考察那些真理,亦一定能发现出它们来。

    现在我们可以谈论各种公理底实在用途。

    (一)

    在已经达到的科学范围内,我们如果用普通方法把科学教人,则这些公理是有用的(如前所说)

    ;不过我们要想促进科学,则这些公理是没有什么用处的。

    (二)在争辩中,我们可用它们来平息固执的争论者,并且使那些争论得到一个结束。我想,这种用途是由下述的途径来的,至于它究竟是否如此,那

小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架