也许有人认为,在60公里高度上、以20马赫的速度飞行的巡航导弹已经偏离了巡航导弹的发展路线,即不再具有隐蔽性。
事实上,与弹道导弹相比,高超音速巡航导弹的隐蔽性仍然非常出色。
必须承认,在战术领域,高超音速巡航导弹确实很难有所作为。即便在某些特殊情况下,高超音速巡航导弹仍然具有不可替代的作用,比如在攻击大型航母战斗群的时候,高超音速巡航导弹仍然是最有效的弹药之一。可是在绝大部分时候,高超音速巡航导弹已经退出了战术大舞台,比如在中东战争中,高超音速巡航导弹在共和国军队消耗的弹药中所占的比例不到千分之三,在美国军队消耗的弹药中所占的比例也不到百分之一,远远低于远程炮弹与滑翔炸弹等战术弹药。当然,影响高超音速巡航导弹战术用途的众多因素中,缺乏隐蔽性只是其中之一,相对而言,高昂的价格才是主因。
在战略领域,价格自然不是大问题。
可以说,就算高超音速巡航导弹的价格远远高于其他战术弹药,也要比战略弹道导弹便宜得多,如果按照系统价格计算,肯定更加便宜。正是如此,在全面销毁核武器的大浪潮中,几个核大国不但没有让战略轰炸机提前退役,反而通过研制与改进高超音速巡航导弹来提升战略轰炸机的存在价值。
在这波浪潮中,俄罗斯的表现并不差。
早在20年代初,为了抵抗因生产严重过剩引发的经济危机与大萧条,俄罗斯就加大了军备投入,其中就有几个与高超音速巡航导弹有关的军事装备项目,最终代号KV…100、在P…700基础上改进开发的项目获得了俄罗斯海军与空军的青睐,并且一度进入工程阶段,如果不是质量严重超标,且减重设计成效微弱,恐怕俄罗斯将在20年代末成为自美国与共和国之后第三个研制与生产高超音速巡航导弹的国家。对俄罗斯军工来说,KV…100失败带来的除了惋惜之外,更多的是经验教训。正是在此基础上,俄罗斯空军于20年代末提出了下一代巡航导弹的性能指标,并且明确要求全新研制,而不是在原有产品上改进。经过10来年的艰苦努力之后,大约在30年代末,由俄罗斯红宝石设计局主导、天青石等几个设计局联合参与的KP…200型高超音速巡航导弹研制成功,并且获得了空军的量产订单,成为新一代Tu…200型战略轰炸机的标准武器(200这个编号也因此而来),俄罗斯也在法国之后,成为第四个掌握了高超音速巡航导弹的研制与生产技术的国家。在此之后,在俄罗斯空军的积极推动下,红宝石设计局又先后推出KP…200M等多种改进型号,以及KP…300、KP…400等新型导弹,其中在2053年问世的KP…500为俄罗斯最新一代高超音速巡航导弹,其最大飞行速度达到20马赫,这也是俄罗斯战略轰炸机的最新标准配备。
此时,共和国天军的战略防御系统面对的正是数十架俄罗斯战略轰炸机从4处空域发射的300多枚KP…500型高超音速巡航导弹。
也许有人会说,拦截弹道导弹的最佳方法都是拦截导弹、而不是拦截弹头,那么拦截巡航导弹的最佳方法就是对付轰炸机、而不是对付导弹。在此之前,共和国天军动能拦截卫星已经攻击了俄军的导弹发射车,为什么不用同样的方法对付俄军的战略轰炸机呢?不管怎么说,轰炸机飞得再快,也比不上动能导弹吧。
这个观点的前面一半没有错,如果能够击落轰炸机,自然是再好不过的了。
问题是,后面一半几乎没有实现的可能性。
关键只有一点,即动能导弹能不能击中高速飞行的战略轰炸机。
在攻击地面的导弹发射车的时候,动能导弹并没有直接集中发射车,而是用落地爆炸时产生的破坏效果来摧毁附近的导弹发射车。动能导弹从发射到落地大约飞行百来秒,而在这么短的时间内,最大速度不到每小时100公里的导弹发射车最多沿公路行驶3000米,所以只需要数枚动能导弹就能覆盖发射车所在的区域,确保摧毁发射车。
在同样的时间内,巡航飞行速度在4马赫以上的战略轰炸机能够飞行上百公里,而动能导弹没有装填炸药,只有在落地或者击中目标的时候才会将动能释放出来,所以要想击中飞行中的轰炸机,至少需要数万枚导弹进行全方位覆盖。
也许有人会说,应该给动能导弹装上制导系统。
暂且不说开放式制导系统会不会受到干扰,在进入稠密大气层之后,飞行速度高达每秒数千公里的动能导弹与空气摩擦时将产生上万摄氏度的高温,而已知材料中,没有哪种能够承受如此高的温度,也就无法在导弹上安装探测窗口,无法让制导系统获取外界信息,制导也就无从谈起了。正是如此,所有用来攻击地面目标与大气层内悬浮目标的动能导弹都只有最简单的惯性制导系统,没有精确制导系统。
除了攻击难度大之外,从外层空间精确跟踪高速飞行的轰炸机也很困难。
可以说,要想击落俄罗斯的战略轰炸机,唯一的办法就是出动重型制空战斗机,在预警机与地面远程雷达的引导下发起攻击。
毋庸置疑,战略轰炸机不会在边境线附近巡逻,俄罗斯也不缺乏战略纵深。
比如在这次攻击中,4处导弹发射空域与共和国边境线的距离均在1500公里以上。隔着这么大段距离,就算制空战斗机有足够的航程,也很难突破俄罗斯本土防空网,并且在重重阻拦之下完成攻击行动。再说了,俄罗斯的战略轰炸机上又不是没有飞行员,遇到威胁之后,肯定会转向逃逸,不会给敌人的战斗机靠近的机会。
重要的是,无法精确跟踪轰炸机,不等于无法探测到轰炸机,也不等于无法掌握轰炸机是否发射了导弹,随着探测距离在5000公里以上的远程战略警戒雷达进入无源时代,部署在共和国西北与东北地区的两部警戒雷达就能监视俄罗斯的西伯利亚与远东地区,并且对升空巡逻的轰炸机做大致定位。更重要的是,只要俄罗斯的轰炸机发射了导弹,远程警戒雷达就能探测到由此产生的电磁场扰动,从而发出警报。
除了远程警戒雷达,太空中还有专门用来探测巡航导弹的战略预警卫星。
总而言之,只要俄罗斯的战略轰炸机发射了巡航导弹,共和国天军的战略预警系统就会发出警报。
当然,拦截导弹要比拦截轰炸机容易一点。
在俄罗斯轰炸机发射了导弹之后,位于西伯利亚与远东地区上空的拦截卫星就进入了作战状态,而且所有配备了高能激光器的拦截卫星均在接到指令之后,自动攻击探测到的高危目标。
问题是,有拦截,自然就有反拦截手段。
与弹道导弹相比,巡航导弹没有速度优势,也不能提前抛掉主发动机。相对而言,巡航导弹的唯一优势就是能够得到运载平台、也就是战略轰炸机的支持。不管怎么说,巡航导弹是弹药,而不是武器平台,自主性非常有限,如果完全依靠巡航导弹自身的突防能力,肯定很难突破共和国的防御网,甚至不大可能进入共和国领空。
针对这一情况,俄罗斯空军开发了一种非常具有创造性的对抗设备:虚像仪。
当然,这不是俄罗斯空军的专利,共和国与美国空军也有类似的设备。
说简单点,“虚像仪”就是一种专门用来欺骗拦截卫星的设备,工作原理很简单,即利用轰炸机与拖拽吊舱内的激光投影仪,在轰炸机周围制造出多个虚拟三维图像,让那些依靠可见光、红外线与紫外线来探测巡航导弹的拦截卫星将其当成巡航导弹,从而在这些毫无价值的虚像上浪费时间,让真正的巡航导弹获得突防机会。由此可见,虚像仪也不能保证巡航导弹能够百分之百的突防,只是大幅度提高了突防率。
正是如此,拦截开始的时候,共和国天军的拦截卫星要面对的不是300多个目标,而是3000多个目标!
可以说,这就是拦截巡航导弹中最大的麻烦。
别说拦截卫星均由计算机控制,就算由人来操控,也很难分辨出真正的巡航导弹。
在没有别的办法的情况下,唯一的办法就是一锅端,不管真假,依次攻击所有“目标”。
问题是,要按照常规方式攻击所有目标的话,就得集中全部拦截卫星。事实上,就算共和国与俄罗斯全面开战,国家战略防御系统也不会把全部力量放在俄罗斯这边,甚至不会把主要拦截力量转移过来。
也就是说,用常规拦截方法,根本不可能做到一锅端。
当然,在系统做出调整之前,位于西伯利亚与远东地区上空的拦截卫星仍然在一丝不芶的履行使命。按照对付巡航导弹的程序,用高能激光依次照射探测到的目标。因为存在大量虚假目标,所以拦截卫星不会对没有摧毁的目标进行重复照射,这也正是拦截巡航导弹与拦截弹道导弹的最大区别。
这个时候,国家战略防御系统中的冗余量统计程序开始发挥作用了。
说直接一点,战略防御系统的中央计算机会随时计算拦截效率,并且预测能否及时拦截所有目标,如果发现无法及时拦截所有目标,而且剩余目标的数量超过了其他拦截系统的最大拦截能力的时候,中央计算机就会调整拦截战术,比如启动专门用来对付巡航导弹的拦截系统。
实际情况正是如此,在大约1分钟之后,确定还有近3000个目标没有被击落,国家战略防御系统的中央计算机得出了“拦截失败”的结果,在断定其他拦截系统也无法一次性拦截这么多的目标之后,启动了应急机制,开始调整拦截战术。当然,这些都是由计算机自动控制完成的,不需要人为干预。事实上,整个计算只花了不到1秒钟,以人的反应速度,根本不可能在如此短的时间内做出准确判断。
随着中央计算机下达指令,近地轨道上空的拦截卫星几乎同时停止交战。
也就在这个时候,位于东经120度赤道上空的地球同步轨道上的一颗巨大的人造卫星上,受电流激发的记忆合金正在迅速膨胀展开,几十台小型机器人沿着舒展开的骨架,拉起了几十面巨大的柔性反射布,最终形成了一面巨大的反射镜。
下方3万多公里的大地上,一座位于太行山区的军事基地也突然热闹了起来。
眨眼间,一道比核爆还要刺眼的光柱拔地而起,以每秒30万公里的速度奔向那面巨大的反射镜,随后又以同样的速度折返回来,落在了距离基地数千公里外的大地上。随着反射镜缓缓转动,地面上的光斑也在缓缓移动。
恐怕谁也没有想到,共和国天军手里还有这种毁天灭地的大杀器!
第42章 大杀器
从时间上看,针对4批射向共和国的巡航导弹的拦截行动只用了2分钟。正是在这短短2分钟的时间内,共和国天军使出的大杀器彻底改变了外界对战略防御系统的认识,也改变了对防御战术的认识。
“大杀器”的全名是“区域性激光拦截系统”。
很简单,含义却非同寻常的名字。
虽然在实际作战使用中,激光武器远非常人想像的那样,能够聚焦在一个点上,而是形成一个比较大的光斑,并且由光斑笼罩住目标,达到烧毁目标的目的,但是在各类能量武器中,激光武器仍然是“点武器”,即只能攻击某个目标(在使用分光器的时候,能够同时攻击几个目标,不能攻击一个区域范围内的所有目标)。激光武器难以成为“面武器”的原因也很简单:对能量的要求太高。
从理论上讲,激光武器应该具备面攻击能力。
众所周知,激光武器实际上是将电能、化学能等能量转化为光能,在攻击目标的时候再将光能转化为内能。如此一来,只要输出能量足够大,就能在确保摧毁目标的情况下扩大攻击范围。
问题就在这里,如果需要攻击一片区域的话,对输入与输出能量的要求将迅速提升。
因为光斑面积与光斑直径的平方成正比,所以在扩大攻击范围的时候,激光武器的输出能量与光斑直径的平方成正比。比如攻击弹道导弹的时候,光斑直径在1米左右,如果需要覆盖一块宽度为1公里的长方形区域,光斑直径至少需要达到1公里,激光器的输出能量就得提高100万倍,平均输出功率在10的24次方级,峰值输出功率在10的26次方级。毋庸置疑,这么高的能量要求,别说那些用复合蓄电池供电的拦截卫星无法满足要求,就连小型可控聚变反应堆也很难满足要求。以21世纪中叶的技术,只有以国家电网为后盾,才有可能达到这个能量标准。
这下,问题就很明显了。
众所周知,国家电网属于最基本的基础设施,以共和国的国家电网来说,从2013年开始,在电力革命的影响下,共和国当局就将建立新的国家骨干电网定为产业结构调整的基础工程之一,而且以适应未来50年发展需求为建设目的。改造工程经历了3代领导人,持续近20年,直到2031年才全部完成,工程总投入近30万亿元。相对而言,与巨大的工程投入相比,漫长的工程周期更让人无法接受。可以说,就算共和国的国家电网的承载负荷高达10的22次方千瓦,峰值承载能力更是高达10的23次方千瓦,基本上能够满足区域性激光武器对输入功率的要求,但是负面影响却难以估量。
正是如此,激光武器才没有能够成为“毁灭性武器”。
准确的说,在50年代之前,将激光武器发展成具备区域打击能力的大规模毁灭性武器一直停留在理论研究阶段,没有具体实施,甚至没有进行相关实验。
问题是,追求更大的威力,永远是武器系统的发展方向。
在全面军备竞赛的大背景下,什么事情都有可能发生。
事实上,让激光武器具备区域打击能力,正是源自拦截巡航导弹的一个研究课题。早在40年代初,利用相位干扰法产生虚拟影像的技术就取得了重大突破,虚像仪等一大批具有强大欺骗作用的武器装备陆续问世,战略防御系统的拦截能力遇到巨大考验。当时共和国当局就在物理实验中心以理论研究的名义成立了一个课题组,即在遇到大量虚拟影像时,用什么办法才能最有效的确保本土安全。理论
小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。
赞一下
添加书签加入书架