《重生工业帝国》

下载本书

添加书签

重生工业帝国- 第373部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!

所以通过他们买进来一批,然后在以机械设备陈旧,需要淘汰的名义,见那些设别淘汰,然后在通过几次转手,悄悄的从澳大利亚运出来,这样才是最好的办法。

反正这样的操作手法,他在美国和日本已经是玩了好多次了,美国人那么精明的警戒系统,都还没能够发现,更何况澳大利亚那不算发达的警戒系统了?

这太阳能实验室里面,最关键的一部分仪器,就要数那种光刻机,这种光刻机,目前我国照国外差的可不是一星半点。

目前世界上也就那么几个国家,可以制造这种大型的电子专用装备,这几个国家就是荷兰,日本,和美国,甚至就连光学仪器最发达的德国,也造不出来。

其实这种玩意,最早就是用来切割计数机所用的芯片的,原本工艺和创意是起源于美国,可是后来因为美国的人工成本实在是太高,美国人就渐渐的放弃了在本国研发和生产,后来这些技术沦落到了荷兰人和日本人的手里,倒是被这两家给发扬光大了。

目前世界上做光刻机做的最好的当属荷兰的ASML,然后是日本的尼康,还有佳能。

美国的因特,AMD,德州仪器这样的芯片生产商,用的都是ASML和尼康这两个品牌的光刻机。

而且这些光刻机,因为涉及到计算机芯片的生产,所以对天朝是进行严格禁运的。

现在马特和爱德华兹,把这种光刻机用于太阳能芯片的生产上,也算是一种意外的突破,他们通过金小强给予的资金,从荷兰和日本那边已经多次采购这样的光刻机了,林林总总的算下来,光是买各种型号的光刻机,恐怕就花了不下三亿美元。

和双方都算是老相识了,所以如果到时候以更换设备的名义,再从他们的手里,买几台回来,估计也不是什么难事。

到时候直接把买来的那些机器,倒几次手,然后搞到天朝来,就是金小强的最终计划。

在参观了新的太阳能研究所的场地,然后又和马特和爱德华兹一番会晤之后,最终金小强又和两人敲定,让两人轮班在国内工作一年。

因为目前国内的太阳能行业,才刚刚起步,毕竟还不是很专业,而且国内除了那么几所国家一流的大学之外,有太阳能专业的学院,还有专门从事太阳能方面研究的科研单位还是比较少。

所以想找人也比较困难,即便是找到了合适的人,那也需要进行相应的培训,所以必须要有这两位太阳能方面的专家来坐镇。

先把这边的太阳能研究所的架子帮忙搭建起来,等这边上了轨道之后,他们才能会澳大利亚专心的进行他们的研究工作。

而马特和爱德华兹,在听了金小强的想法之后,也对他的意见表示同意,毕竟目前世界上研究太阳能的方向不少,他们不知道天朝方面的太阳能科研水平是什么样的,而且方向是什么样的?

他们必须要把这边的研究所的科研方向确定下来,找到合适的带头人之后,然后双方才能够形成合力,这样才能够加快他们的太阳能研究进度。

事情就这样大致的确定了下来,马特和爱德华兹,都喜滋滋的去研究该建一座多大规模的研究所去了,而金小强则是拿着两个人的太阳能涡轮增压技术的电子演示版,还有理论设计,开始钻研了起来……

第五百八十章 关于太阳能电池的畅想

马特和爱德华兹在老早之前研究太阳能技术之的时候,就一直曾经关注与到底该如何提高太阳能转化的效率的问题。

其实关于太阳能转化的效率问题,一直都是困扰着整个太阳能科学研究领域最大的难题。

最早的时候,人们使用的太阳能电池的材料,都是一些特殊的涂层,通过吸收太阳能的热能,然后将这些热能来转化为动能。

在之后又有科学家,将这些热能转化为化学能,然后储存起来,然后在转化为动能。

一百多年一来,人类科学家在关于太阳能的研究和转化方面,做了大量的研究,通过各种手段,来达到自己的目的。

直到上世纪的五六十年代,随着化学科学,以及物理科学所取得的新突破,人类关于太阳能的科学研究,才真正的现实了起来。

尤其是随着电池领域所取得的突破,以及材料科学领域所取得的突破,人类科学家在太阳能的转化领域,才取得了更大的进展。

从上世纪七八十年代开始,人类科学家就开始尝试着使用硅晶片,来作为新一代的太阳能转化器的材质。

因为硅晶片属于半导体材料,起自身的导电性能并不是特别的好,但是在吸收太阳能,然后进行储存,并且在数控管理方面,倒是有着他得天独厚的优势。

所以最近几十年来,硅晶片,已经越来越多的成了太阳能转化技术和手段当中的重要部分,它被大量的制成太阳能光伏,来用于这方面的研究。

不过尽管硅晶片被越来越多的做成了各种太阳能转化的光伏材质,可是在太阳能的转化效率方面,它们却并没有把目前的太阳能转化率给提高多少。

目前人类制造的太阳能转化器,即便是以最好的硅晶片作为光伏的,一般的转化率,也就是被控制在百分之十九,到百分之二十二之间。

想要做的更高,还有着相当的困难。

而马特和爱德华兹,也发现了这个难题,于是他们就从各种角度来分析目前太阳能电池板上所使用的硅晶片,各种手段是层出不穷,粉墨登场。

最后几经试验,他们终于是发现,原来目前所使用的硅晶片,之所以在太阳能转化率问题上一直做不到更高,最主要的还是和目前所使用的这些硅晶片的内部物理分子结构有关。

目前所使用的这种硅晶片的分子结构,就决定了他们不能够迅速的扑捉到太阳能管线中的黄色光子,只能扑捉到红色光子。

而红色的光子,所带有的能量,明显要比黄色光子所带的能量要小得多。

一般来说,要有两个甚至更多的红色光子的能量,才能够抵得上一个黄色光子所带有的能量。

那么该如何能够让硅晶片扑捉到,更加多的黄色光子,而不是红色光子呢?

或者如何才能够让硅晶片所扑捉到的红色光子,更加有效的转化为能量更大的黄色光子呢?

于是两位科学家,在电脑上做了无数次的模拟实验,最后得出的一个结论就是,如果想要让硅晶片在太阳能转化的问题当中,变得更加的有效率,能够更加迅速有效的扑捉到太阳能中能量更大的黄色光子,那么就必须要调整硅晶片内部的物理分子结构。

让每个硅晶分子都呈60度的夹角排列,这样三个硅晶分子就可以形成一个坚固的等边三角形,这样当太阳光照射到硅晶片的时候,每三个硅晶分子所做成的一个坚固的三角形布局,就可以迅速的扑捉到太阳光线中,能量最为充足的黄色光子,而黄色光子也不会因为所带有的能量太大,而直接冲破这个稳定的三角形,把能量消耗出去。

这样当黄色光子,撞击到这个稳固的三角形里面的时候,他所带有的能量,就会迅速的冲击到这个等边三角形当中,然后会引起硅晶分子本身的外围电子的溢出,然后在通过有效的引导,将这些电子,引入到一个蓄电池当中储存起来。

或者直接将这些电子所形成的电能,输入到电网,或者直接用于加热,或者转化为动能等等,这样一来就可以达到提高太阳能转化率的目的。

而且这样的硅晶分子的等边三角形的排列结构,还可以在光线不足的时候,将扑捉到的比较弱势的红色光子,迅速的转化为黄色光子,因为当两个或者更多的红色光子,在撞击到一个硅晶圆所组成的等边三角形架构里面的时候,因为能量较弱,不能冲破硅晶圆的等边三角形的结构,他们会因为同频谱的震动,而迅速的结合成为一个黄色光子,从而将能量迅速的转化到硅晶圆的电子移动上面。

这样一来,就可以大大的提升,光电转化的效率。

而经过大致的计算,如果能够做出这样的硅晶圆的话,那么使用这种硅晶圆作为太阳能光伏之后,太阳能的光电转化效率,将会比现在至少提升一倍!

这是啥概念,这可就意味着这种那个新型太阳能电池板的转化效率,会提升到百分之三十八到百分之四十四之间。

如果使用了这样的硅晶圆,做成马特和爱德华兹他们刚刚研究出来的那种薄膜太阳能电池,如果把这样的薄膜太阳能电池,黏在一辆汽车的车顶上。

那么使用了这样的太阳能充电的电池的混合动力车,在电池驱动的模式下,他的续航能力将很有可能会突破八十甚至是一百公里,当然这是在阳光光线非常良好的情况下。

可别小看了这八十到一百公里,就目前而言,世界上最好的混合动力车,也就是丰田的普锐斯了,可是现在的普锐斯的电池续航能力,也不过才是二十多公里而已。

即便是后来升级到第三代产品,大面积的更换了锂电池,他的极限电池续航能力,也没能够超过四十公里。

而后来BYD推出的一款混合动力车的续航能力,当时报称是可以超过五十公里,当时这个数据一出,就已经是很惊人了。

而如果使用了这样的太阳能电池,在加上越来越成熟的锂电池,还有动能回收系统,那么只要金小强他们可以把他们的混合动力车的电池续航能力,达到甚至是超过八十公里,那可就绝对会是一个里程碑似地存在了。

而且这样的车型,的油耗,肯定也是惊人的,即便是在拥堵的城市里,估计油耗每百公里,也不过就是五点几而已。

不过请注意,这百公里五点几的油耗,可是纯都市拥堵路段行驶出来的。

别看目前华阳动力的那款美国队长的百公里油耗是五点几升,和丰田的普锐斯不相上下,可是要知道这样的油耗,可是跑了一段的高速路,然后在跑了一段的市内拥堵路段之后,得出来的综合油耗。

而且这还得必须是经过专业驾驶人员,才能够跑出来的数据,要是换了普通人,想跑出这样的数据,那几乎是不可能的。

如果普通的消费者到手了这样的车,那么他们亲自驾驶下来的百公里油耗,肯定是不会低于六点级升的。

所以一般汽车所公布的百公里综合油耗,都并不是那么准确的,这一点是广达汽车厂商和消费者们所共识的潜规则。

消费者们也不会在这些问题上,过多的和汽车制造商们较劲的,一般按照汽车制造商所公布的百公里油耗,再上浮一升或者一点几升的油耗,这才是这款车真实的百公里油耗,这已经成了大家共同认可的常识。

所以如果使用了这样的太阳能电池的混合动力车,真的能够跑出,真实的市内百公里五点几升的油耗的话,那么这款车的数据表现无疑是非常惊人的。

到时候在混合动力到来的大时代里,这款车肯定会是一款非常惊人的产品。

但是前提是,必须在混合动力车到来的时代之前,把这种太阳能电池给研究出来。

而这里面的关键,那就要数该如何改变那些作为太阳能光伏的硅晶片的内部分子排列了。

如果是之前,金小强肯定是毫无办法可言,他对于太阳能方面,本来就是一知半解,对于硅晶片的制造,更是两眼一抹黑,啥也不知道。

可是现在不同了,尤其是在他得知自己手上的那些纳米分子细胞,最擅长干的就是,改变其他物质的分子排列结构,然后突出这种物质的某一方面的特性之后。

试想以后,在硅晶片制造的时候,尤其是在硅晶的原材料,那些细沙经过清洗,筛选,然后送进硅晶培养生长炉的时候,自己偷偷的给那些原材料当中,撒上一定比例的得到了自己指令的纳米生物细胞,然后经过培养炉所炼就出来的硅晶片,就具备了上诉的特点,那么这种太阳能电池的制造,还不是手到擒来?

一想到这些,金小强就感觉有点迫不及待了,他现在最迫切想看到的就是,那个太阳能研究所,尽快的建立起来,然后他就可以验证一下自己的推论了……

第五百八十一章 最佳切入点

这几天的功夫,金小强就一直在琢磨着到底该如何生产出,这种新型的太阳能电池来,每天都是越想越兴奋,而且还有了很多延伸性的想法。

在他看来,如果要是这样的太阳能电池,可以研究成功,那么就说明自己手上的这种纳米生物细胞,在改变物质的分子排列机构上面是无敌的。

他可以通过改变各种物质的分子排列结构的办法,来达到突出,或者弱化某些物质的特性,这样一来,那自己岂不是可以解决掉,很多困扰着科学界的难题,尤其是在材料科学领域?

那自己岂不是一个无敌的存在?

就比如目前已知困扰着宾信微他们的锂电池电解液的问题,那自己是不是也同样可以,帮忙做出一定的调整呢?

还有他们所研究的那种石墨锂电池正极,不就是靠着石墨分子排列的特性,来增加电池的电容的吗?

如果自己再给那些石墨上面做一些处理,让那些石墨排列之间的空洞更多,那么是不是就可以增加更多难道锂电子的储存空间?

这样一来的话,只要锂电子的储存空间增加,那么电池的能量密度,也会随之而增加,这样的锂电池的电容就会更大,放电的时间,就会持续争强。

而且只要自己使用这种纳米生物细胞,来更加平衡那锂电池所使用的磷酸铁锂电解液的稳定性,是不是就可以减少锂电池爆炸的可能性?

要知道锂电池之所以到现在还没有大范围的推广开始使用,其中一个很主要的原因,就是因为锂电池里面的锂离子实在是太活泼了,这种锂电子一旦暴漏在空气当中,和氧气有所接触的话,就会立刻起火燃烧,一旦要是处于一个密闭空间之内的话,就会因为迅速燃烧所产生的热量,还有膨胀的气体,引起剧烈的爆炸。

如果自己要是使用这种生物细胞作为稳定剂,调整一下那盐酸铁锂电解液的内部分子结构,那么会不会降低这种爆炸的可能性?

如果要是能够做到上述的几点的话,那么一款超级锂电池,不就诞生了?

并且可以迅速的应用在新一代的混合动力车型上面,一旦使用了这种

小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架